Динамические массы, копирование свойств, стадии монтажа, сталежелезобетонные, грунтовая подушка, расчет огнестойкости, сваи, комбинации нагрузок, результаты в *.сsv, предельная неупругая деформация, стыковка профилей, комбинированные ТЗА, канат, расчет устойчивости, тонкостенные профили, забивные сваи, проверка заданного армирования, итерационные объемные КЭ
-
В работе плагина для Tekla Structures восстановлено обновление поперечных сечений по результатам МКЭ-расчета, подбора/проверки стальных сечений.
-
Улучшена передача из Revit в ЛИРА-САПР плит, отверстий и нагрузок с криволинейными участками контуров.
-
Улучшен импорт IFC, а именно:
-
импорт привязок стен;
-
распознавание балок;
-
распознавание колонн;
-
исправлена ошибка распознавания уровня пространств;
-
доработано распознавание лестниц и преобразование призм в лестницы.
-
-
Исправлена ошибка экспорта IFC, из-за которой в некоторых случаях происходило аварийное завершение работы приложения.
-
Улучшен экспорт в DWG. При активной опции "Только сечение" для разреза при экспорте в DWG больше не передаются лестницы, если они не попадают в сечение.
-
Улучшено копирование этажей из одного проекта в другой.
-
Восстановлено отображение параметра "Жесткая вставка" для балок в диалоговом окне "Свойства".
-
Доработан алгоритм генерации контуров продавливания для колонн с повернутым сечением на плане.
-
Добавлена проверка для способа построения "Прямоугольник". Теперь построение объекта не выполняется, если две стороны прямоугольника совпадают.
-
Улучшена передача плит из ВИЗОР-САПР в САПФИР (восстановление плит из расчетной модели в физическую).
-
Добавлен учет объема капители и подколонника при расчете объема бетона колонн.
-
Улучшено формирование стержневых аналогов простенков для стен с большим количеством проемов разной высоты.
-
Доработано диалоговое окно "Заполнение проема".
-
Исправлена ошибка отрисовки арматуры в 3D виде.
-
Исправлена ошибка, из-за которой нагрузка, приложенная через свойства плиты не учитывала проем в плите.
-
Исправлено удаление связей между нодами при использовании сохраненного алгоритма из библиотеки САПФИР.
-
Улучшена работа нода GridWall. Теперь триангуляция учитывается при тиражировании стены по этажам.
-
Доработана триангуляция через ноды.
-
Доработан нод формирования сетки осей из подложки.
-
Доработаны ноды импорта IFC и XLS.
-
Исправлена ошибка работы нодов создания нагрузок, когда значения нагрузок необходимо получать из таблиц через нод ImportXLS.
-
Исправлена ошибка работы нода ImportIFC при попытках его обновления.
-
Исправлена возможная ошибка при чтении lir-файлов для задач, содержащих удаленные, но не упакованные элементы, в которых оставались заданными динамические массы.
-
В диалоге "Информация об узле" для операций копирования свойств узлов восстановлена команда "Копировать для отмеченных объектов".
-
Исправлена возможная ошибка работы расчетного процессора, возникавшая при большом количестве заданных стадий монтажа (более чем 300 стадий).
-
Исправлена передача моделей из САПФИР , содержащих сталежелезобетонные поперечные сечения.
-
Для пространственного стержневого КЭ с учетом депланации сечения (тип КЭ 7) уточнено вычисление усилия бимомента Bw.
-
В системе ГРУНТ исправлено назначение характеристик для слоя грунтовой подушки.
-
Исправлена ошибка подбора поперечного армирования при расчете огнестойкости для норм ДБН В.2.6-98:2009.
-
В расчете жесткости свай исправлен учет параметра свай "исключить из длины сваи длину жесткой вставки".
-
Для КЭ 265, 266 в описании жесткости восстановлен вывод корректного значения для заданного зазора.
-
При генерации таблицы РСН для норм СП РК EN 1990:2002+A1:2005/2011 устранено возможное аварийное завершение работы приложения при создании комбинаций основного сочетания, содержащих ветровые и снеговые виды нагрузок.
-
В ЛИРА-САПР API добавлены методы для импорта файлов и генерации результатов в формате CSV.
-
Исправлен учет предельной неупругой деформации при передаче усилий РСУ в расчет стальных узлов. Ранее не учитывался коэффициент редукции, когда в результате расчета сейсмики для норм КМК 2.01.03-19 получалось менее 2-х составляющих.
-
Исправлено аварийное завершение работы приложения при попытке настроить стыковку составных профилей типа швеллер и швеллер+двутавр.
-
Устранено возможное аварийное завершение работы приложения при расчете параметров нелинейных трещин в железобетонных пластинах, у которых арматура в сечении пластины задана с использованием комбинированных ТЗА.
-
Реализовано обновление параметров жесткости КЭ 310 и жесткости стального каната при смене диаметра каната.
-
Для тонколистовых профилей (толщина менее 4 мм) восстановлен расчет устойчивости в соответствии с ДБН В.2.6-198:2014.
-
Исправлен вывод мозаик процентов использования по устойчивости стальных балок и колонн.
-
Учтен коэффициент условий работы Yc при вычислении несущей способности забивных свай на выдергивание.
-
Для железобетонных стержневых элементов исправлено отображение значений на мозаике коэффициентов запаса заданного армирования в режиме проверки "Коэффициент запаса/дополнительное армирование (КЗ/ДА)", а также вывод значений в таблицах "Арматура в элементах".
-
Уточнено вычисление НДС в итерационных нелинейных объемных КЭ с заданными основным и армирующим материалами.
-
Для норм СП РК EN 1992-1-1:2004/2011 исправлена ошибка определения КЗ в пластинчатых элементах, когда действующие усилия от перерезывающих сил меньше несущей способности бетонного сечения.
-
Снято ограничение на количество слоев грунта, задаваемых в диалоге "Скважины" системы ГРУНТ.
-
Исправлено документирование таблицы исходных данных "Скважины" , для случая, когда нумерация скважин начинается не с "1".
РСУ, крановые нагрузки, таблицы, уточнение жесткостей, объединение перемещений, характеристики грунтов, Книга Отчетов, нагрузка-штамп, суперэлементы, начальные несовершенства, модуль динамики 61, настройки интерфейса, шаговая нелинейность, таблицы ввода, МЕТЕОР, сталь, коэффициенты ответственности, кирпичные простенки, жесткость свай, прогрессирующее обрушение, коррозия, конструктор сечений, главные и эквивалентные напряжения, Tekla Structures 2023, коэффициенты условий работы, СП РК EN 1998-1:2004/2012, раскрепленные и нераскрепленные элементы, интерактивные таблицы, ФОК Комплекс, метод номинальной гибкости.
- Исправлена проблема с привязкой сечения при зеркальном копировании колонн.
- Исправлена работа арматурных выпусков для колонн со смещенным сечением (не в центре масс).
- Исправлена ошибка создания этажей в ноде Импорт
*.ifc
- Исправлена ошибка при импорте криволинейных балок из файла
*.ifc
- Исправлен поворот сечения для балок, близких к вертикальным.
- Для наклонных плит реализована возможность создания дополнительных загружений в монтажных задачах.
- Добавлена возможность рассечение на этажи для наклонных колонн.
- Исправлена подрезка балок под наклонные колонны.
- Исправлен фильтр для экспорта 3D-модели в AutoCad.
- Исправлена ошибка объединения плит с отверстиями.
- Восстановлено формирование комбинаций РСУ для крановых нагрузок.
- Исправлена кодировка ряда текстовых таблиц (в формате
*.rpt
): таблица характеристик грунтов, результаты расчета коэффициентов упругого основания C1/C2, результаты расчета сваи, таблицы результатов металлического расчета. - Устранено возможное зацикливание при итерационном уточнении жесткостей в нелинейном расчете конструкций "Инженерная нелинейность 1" для элементов с малым процентом армирования.
- Ускорен просмотр и редактирование групп объединения перемещений, когда их количество составляет более 10 000 групп.
- В диалоговом окне "Характеристики грунтов" устранена проблема отображения текста, вставленного из буфера обмена.
- Исправлена проблема восстановления элементов "Книги Отчетов", с именами, содержащими кириллические символы.
- Для мозаик нагрузок сосредоточенных сил добавлена возможность раздельного просмотра нагрузок-штампов и прочих сосредоточенных сил.
- Исправлено чтение результатов РСУ для суперэлементов, в именах которых содержатся кириллические символы.
- Для конечных элементов, входящих в конструктивный элемент, устранено дублирование нагрузок при задании начальных несовершенств.
- Для сейсмического воздействия по нормам СП РК EN 1998-1:2004/2012, НТП РК 08-01.1-2021 (модуль динамики 61) исправлено визуальное представление графиков горизонтального и вертикального коэффициентов динамичности для III-го типа грунта.
- Исправлена проблема переноса пользовательских настроек интерфейса из предыдущих версий ПК ЛИРА-САПР.
- Для нелинейных задач, содержащих суперэлементы, уточнено чтение результатов на промежуточных шагах нелинейных историй, и для развернутых суперэлементов исправлено отображение результатов в окне информации об узлах и элементах.
- Для задач с шаговой нелинейностью восстановлено формирование текстовых таблиц усилий по РСН на финальных шагах историй нелинейных загружений.
- Исправлена ошибка копирования таблицы ввода "Расчетные сочетания нагружений (РСН)" в другую расчетную схему.
- Устранено возможное аварийное завершение работы программы при зеркальном копировании фрагмента схемы.
- Для универсального стержня переменного сечения внесены уточнения по расстановке ребер жесткости.
- При работе с "Книгой отчетов" устранена возможная проблема сохранения группы изображений в папках с длинными именами.
- В системе МЕТЕОР восстановлено формирование обобщенной задачи в режиме "РСУ+" для задач с динамикой во времени, и задач с историями нелинейных загружений.
- Улучшено масштабирование пиктограмм панелей инструментов для 4К UHD мониторов.
- Реализован учет пользовательских значений коэффициентов ответственности при вычислении РСУ для кирпичных простенков.
- При вычислении жесткостей свай уточнено определение типа грунтового слоя под пятой сваи.
- Исправлено определение ширины осадочной лунки для некоторых типов стандартных сечений.
- При расчете стальных конструкций на прогрессирующее обрушение, в истории/РСУ/РСН для последнего загружения (Особое/Аварийное воздействия) можно задавать долю длительности для выполнения проверки по прогибам.
- Устранена возможная остановка пакетного расчета в процессе итерационного уточнения жесткости свай.
- При выдаче результатов расчета усилий в простенках исправлено возможное расхождение значений в диалоговых окнах и в файле отчета.
- Для стальных сечений, рассчитываемых с учетом коррозии, уточнены значения процента использования по условию общей устойчивости, выводимые в файл результатов.
- Устранена неточность при экспорте усилий для перерезывающих сил в "Конструктор Сечений".
- Исправлена ошибка отображения результатов расчета главных и эквивалентных напряжений по РСУ для больших задач (более 32 тыс. элементов).
- Добавлен плагин для связи с Tekla Structures 2023.
- В расчете железобетонных элементов на перерезывающую силу для групп усилий А1, В1, С1, D1, E1 уточнено применение коэффициентов yb2 и yb3.
- В расчете железобетонных элементов на перерезывающую силу по нормам СП РК EN 1998-1:2004/2012 уточнено формирование расчетных характеристик материалов.
- В расчете железобетонных стержневых элементов по нормам СП РК EN 1998-1:2004/2012 уточнено влияние параметра "раскрепленный/нераскрепленный" элемент при расчете по номинальной гибкости.
- Исправлена кодировка
*.xls
файлов с результатами интерактивных таблиц. - Исправлен экспорт данных для расчета фундаментов из ПК ЛИРА-САПР 2022 в ПК ФОК Комплекс в случае, когда в экспортном файле содержались кириллические символы.
- При вращении расчетной схемы, представленной в изометрической проекции, исправлено ее отображение при повороте вокруг глобальных осей X и Y.
- В расчете железобетонных стержневых элементов по нормам СП РК EN 1998-1:2004/2012 для колонн уточнено вычисление приведенных моментов при расчете по номинальной гибкости.
стадии монтажа, дополнительные загружения, максимальная площадь армирования, контрольный периметр, нагрузка-штамп, АЖТ, коэффициент к модулю упругости, коэффициент поведения, РСН, график изменения реакций во времени, деформированная схема, конструктивные блоки, суммирование нагрузок, полярные моменты инерции масс, простенки, коэффициенты диссипации, сейсмическая комбинация, таблицы ввода, редактор загружений, динамические загружения, послестадийные загружения, итерационный процесс, расчет на акселерограмму, фундаменты машин с динамическими нагрузками, горизонтальная жесткость, объединение нагрузок, характеристики ИГЭ, грунтовая подушка, сваи, расчет продавливания, гибкость, схема трещинообразования, расчетная длина, продольный изгиб, динамика во времени, касательные напряжения, сортаменты сталей, скважины, ветровая нагрузка, ассиметричный напор, суммирование форм, структура проекта, новый метод триангуляции, стыки, закладыне детали, чертежи, размещение арматуры, поперечное армирование, каркасы, ноды
ИНТЕРОПЕРАБЕЛЬНОСТЬ - компоненты технологии ВIM
-
Улучшена работа плагина Revit - ЛИРА-САПР:
- диалоговое окно “Экспорт” стало немодальным, что позволяет выполнять назначение свойств на аналитические модели Revit без необходимости закрывать окно;
- восстановлена передача Линейной нагрузки на элемент из Revit 2022;
- добавлена возможность назначить “материалы по категории” для английской локализации программы.
-
Объединены импорты
*.dwg
и*.dxf
для команд “Импорт поэтажных планов”, “Импорт Чертежа AutoCad”, “Импорт модели в новый проект” и для нода “Импорт подложки в формате*.dxf
,*.dwg
”. - В диалоговом окне “Импорт поэтажных планов” добавлено сохранение высоты этажей в шаблон параметров для дальнейшего использования.
-
Улучшен импорт IFC:
- создаются этажи по плитам для моделей, которые записаны в IFC как один этаж;
- улучшено распознавание стен с большим количеством граней;
- улучшено распознавание проемов;
- добавлено распознавание цветов объектов;
- улучшен импорт балок.
САПФИР-КОНСТРУКЦИИ
- Для способа приложения ветровой нагрузки 1-в торцы перекрытий реализована опция напор/отсос раздельно (для всех нормативов). При выбранной опции “Да” формируются отдельные нагрузки для напора и отсоса.
- Реализация положения СП РК EN 1991-1-4:2005/2011 Ветровые воздействия п.7.1.2 (Ассиметричный напор ветра). Для способов приложения ветровой нагрузки 1-в торцы перекрытий и 2-напор/отсос в пространстве, добавлена возможность задания параметра Ассиметричный напор, с указанием коэффициентов давления слева и справа (для всех нормативов).
- В диалоге “Суммирование нагрузок” добавлена возможность корректировки величин итоговых значений нагрузок отдельно по каждому направлению и по каждому загружению. Данная опция доступна в режиме Архитектура и в режиме Расчетная модель.
- Добавлены модули задания сейсмических нагрузок по нормам республики Узбекистан КМК 2.01.03-19 (33 модуль), Таджикистан МКС ЧТ 22-07-2007 (48 модуль) и Грузии ПН 01.01.-09 (53 модуль).
- Для всех сейсмических модулей добавлены следующие параметры:
- необходимый процент модальных масс;
- суммирование форм перемещений, имеющих одинаковую частоту;
- выбор метода суммирования сейсмических составляющих;
- учет отброшенных и невычисленных форм колебаний.
- В режиме “Расчетная модель” в диалоге “Редактор загружений” доступна опция Копировать нагрузки в архитектуру. Данный инструмент позволяет скопировать любые нагрузки в архитектуру, в том числе ветровые нагрузки, нагрузки, полученные инструментом сбора нагрузки через посредники.
-
Реализовано удаление загружения совместно со всеми нагрузками, которые в нем находятся:
- для ветровой, сейсмической, специальной нагрузки и давления грунта - удаляются соответствующие позиции в диалоговом окне “Структура проекта”;
- для нагрузки, задаваемой в свойствах плиты - очищается соответствующий параметр со значением нагрузки;
- для объектов с интерпретацией Нагрузка (перегородка, балка, колонна, плита и т.д.) - удаляется сам объект
- Реализован новый метод триангуляции “адаптивный четырехугольный версия 2”. По результатам сравнения на ряде задач метод “адаптивный четырехугольный версия 2” может дать ускорение от 2 до 4 раз. Чем больше отношение габарита схемы к шагу триангуляции и чем больше обязательных точек для триангуляции, тем быстрее будет происходить триангуляция новым методом по отношению к старому. Также на ряде задач при включенной опции “Сгладить сеть” заметно улучшение качества триангуляционной сети.
ПАНЕЛЬНЫЕ ЗДАНИЯ
- Улучшена разбивка КЭ стыка над проемами.
- Улучшено формирование закладных деталей в стыке над проемами, для которых в свойствах проема установлен параметр “Перемычка - Стержнем”.
САПФИР-ЖБК
- Реализовано получение чертежей и узлов продавливания по нормам СП РК EN 1992-1-1:2004/201.
- Разработан новый диалог “Размещение арматуры” , который предназначен для задания параметров размещения стержней поперечного армирования против продавливания и последующего конструирования отдельными стержнями или каркасами.
САПФИР-ГЕНЕРАТОР
- Добавлены ноды “Дуга по трем точкам”, “Дуга по двум точкам и направлению”, “Плоскость по трем точкам”.
ВИЗОР-САПР
- Для норм EN 1990:2002+A1:2005, СП РК EN 1990:2002+A1/2011 реализована возможность формировать определяющие усилия РСН(о) по результатам расчета задач динамики во времени. Данная возможность позволяет, например, использовать расчеты во временной области для проектирования активной сейсмоизоляции и одновременно выполнять проверку несущей способности конструктивных элементов (железобетонных, стальных).
- Доработана опция отображения схемы, которая показывает стадии монтажа с учетом дополнительных загружений. При включении данного флага отображаются не только элементы смонтированные на данной стадии, но и связанные с этой стадией дополнительные загружения. Также активизация данного флага влияет на построение мозаик нагрузок и выполнение суммирования нагрузок (учитываются дополнительные загружения заданные в текущей стадии монтажа).
-
Для задач с моделированием возведения добавлены контроли задания исходных данных, также в диалоге Моделирование нелинейных загружений добавлена команда для отметки элементов, которые смонтированны на текущей стадии, с нагрузками, приложенными ранее монтажа.
-
Добавлена команда позволяющая добавить отмеченный элемент в список монтируемых или демонтируемых элементов.
-
Добавлена возможность вывода мозаики максимальной площади продольной арматуры в углах/у верхней и нижней гранях/у боковых гранях сечения стержня по выбранному направлению.
-
Добавлены мозаики результатов расчета железобетонных конструкций:
кодов ошибок при расчете сейсмического запаса FS в стержнях и в пластинах для норм ДБН В.2.6-98:2009 "Бетонные и железобетонные конструкции";
контрольного периметра Uout при продавливании для норм СП РК EN 1992-1-1:2004/2011 "Проектирование железобетонных конструкций".
-
Реализованы мозаики углов между выбранной местной (согласованной) осью/осью ортотропии пластины и глобальной осью.
-
Добавлена возможность группового редактирования нагрузок-штамп, например, смена интенсивности нагрузок от наружного ограждения.
-
В диалог формирования АЖТ добавлена возможность преобразования выбранных АЖТ в виде стержней большой жесткости. Данная возможность может быть использована при моделировании температурных нагрузок, например, для плит перекрытий чтобы исключить концентрации напряжений в местах стыковки с элементами колонн.
-
Добавлен вывод огибающих максимальных, минимальных и максимальных по абсолютной величине значений исследуемого параметра для нелинейных историй (без учета промежуточных результатов) и параметров трещин (с учетом промежуточных результатов).
-
Добавлен вывод огибающих максимальных по абсолютной величине (ABS) значений исследуемого параметра для РСУ и РСН определяющих.
-
В диалог задания коэффициента к модулям упругости добавилась возможность изменять для отмеченных элементов или для всей схемы ранее заданные коэффициенты в n раз.
-
В диалоговое окно “Перекосы” добавлен коэффициент поведения q для вычисления коэффициентов чувствительности к перекосу этажа при рассмотрении сейсмической расчетной ситуации.
-
В диалоговое окно “РСН” добавлена команда “Заменить виды загружений в текущей таблице РСН по данным из Редактора загружений”, при помощи которой обновляются все виды загружения по данным из “Редактора загружений”.
Внимание! Использование данной команды приведет к сбросу ранее созданных комбинаций РСН.
-
Для узлов в которых вычислена нагрузка (реакции) на фрагмент в динамике во времени реализовано построение графиков изменения реакций во времени.
-
Добавлена команда “Притягивать к экстремумам” в окне просмотра, исследования и документирования графиков изменения во времени: перемещений, усилий, нагрузок на фрагмент, нагрузок на группу простенков, температуры и графиков кинетической энергии. При включении режима “Притягивать к экстремумам” при добавлении контрольных моментов времени с помощью мыши, отметка будет устанавливаться в шаг с ближайшим локальным экстремумом.
-
Для учета несовершенств в сложных конструкциях используют подход, когда формируют начальную геометрию с искривлением. Более правильный выбор формы начальных несовершенств должен повторять глобальную форму потери устойчивости. В текущей версии реализована технология создания новой геометрии схемы на базе результатов (перемещений, форм колебаний, форм потери устойчивости).
-
Реализована команда позволяющая преобразовать отпор грунта в статическую нагрузку.
-
Добавлена настройка отображения стороны маркировки координационных осей.
-
Добавлена возможность автоматической разбивки по вертикали конструктивных блоков стен и колонн с учетом установленных высотных отметок.
-
В диалоге “Суммирование нагрузок” добавлена возможность вычисления полярных моментов инерции масс как для всей схемы, так и для произвольного фрагмента схемы относительно вычисленных центров масс или произвольно заданных полюсов.
-
Добавлена команда позволяющая выполнить пересчет суммарных и погонных нагрузок, вычисленных на простенки (для случаев когда после полного расчета выполнялась корректировка групп простенков и/или расчетных уровней).
-
Разработан инструмент позволяющий выполнить назначение коэффициентов диссипации на элементы расчетной схемы, а также добавлена мозаика их визуализации.
По умолчанию коэффициенты диссипации для элементов не заданы (=0). При помощи этой команды можно назначить разные коэффициенты отдельным элементам. Если коэффициент для каких-то элементов не будет назначен, то в расчете будет использоваться коэффициент, указанный в параметрах динамического воздействия модуль 27 и 29.
-
Для норм СП РК EN 1990:2002+А1:2005/2011 реализована опция представления таблицы сочетаний “в явном виде”, где коэффициенты сочетаний и редукции скорректированы с учетом коэффициентов безопасности к нагрузкам и вида заданных нагрузок.
Внимание! В данном релизе данная опции реализована для случая, когда в модели используются нормативные нагрузки.
-
В таблице РСН для норм СП РК EN 1990:2002+А1:2005/2011 в меню “Коэффициенты” добавлен столбец коэффициентов fi, предназначенных для снижения вклада загружения в сейсмическую расчетную комбинацию. По умолчанию все значения равны 1.
Примечание: В соответствии с новым НТП РК 08-01.2-2021 (см. стр. 43-45, раздел 4) необходимо понижать вклад некоторых временных нагрузок в формирование масс для сейсмического воздействия. На заданные коэффициенты fi будут умножены коэффициенты сочетаний соответствующих видов загружений. Рекомендуется создать отдельную таблицу РСН, специально для формирования масс для сейсмического воздействия, где нужным образом скорректировать коэффициенты fi, и сформировать комбинацию РСН, из которой потом получить сбор масс.
-
Реализована таблица ввода для "Коэффициентов к жесткостям" в привязке к подзадачам.
-
Добавлена возможность управления формированием трассировки расчета для указанных контуров продавливания для норм СП РК EN 1992-1-1:2004/2011 "Проектирование железобетонных конструкций".
-
Восстановлено быстродействие вычислений РСН.
-
Устранена сбивка видов загружений при загрузке файлов в систему “МЕТЕОР”.
-
Улучшено построение мозаик сосредоточенных нагрузок. Теперь нагрузки-штамп, заданные для пластин и объемных КЭ, не принимают участие в построении сосредоточенных мозаик нагрузок.
-
Синхронизация и одновременное отображение данных в диалоговых окнах: “Редактор загружений”, “Таблица динамических загружений”, “Учет статических загружений”. Также добавлены команды позволяющие вызвать “Редактор загружений” из диалогового окна “Таблица динамических загружений”.
-
Для “свернутых” динамических загружений из режима результатов реализована вставка таблицы коэффициентов из буфера обмена, при этом коэффициенты к составляющим остаются по умолчанию равными "1".
-
Модифицированы и расширены новыми командами панели ленточного интерфейса, а также меню и панели инструментов классического интерфейса.
-
Реализованы многочисленные интерфейсные и другие пожелания пользователей.
-
Контекстная справка дополнена описанием новых возможностей.
МКЭ-процессор
-
Для всех нелинейных элементов, которые могут участвовать в расчете послестадийных загружений реализовано применение коэффициента к жесткости - kE. Таким образом коэффициенты применяются к линеаризованным жесткостям, полученным в расчете “Инженерной нелинейности 2”. Данная возможность может быть полезна, например, для случая использования диаграмм работы материалов при длительном действии нагрузок, получении перераспределения жесткостей с учетом образования трещин в ж/б сечениях, а для послестадийных загружений (ветровая пульсация, удар/гармоника, сейсмика) осуществить переход к кратковременному модулю.
-
Для каждого динамического загружения со специфическими критериями остановки итерационного процесса (достижение нужного количества суммарных модальных масс, предельной частоты, и т.д.) после каждой итерации выводится информация о набранных суммарных массах (для сейсмики), о максимальной вычисленной частоте (для пульсационных составляющих). На основании данной информации пользователь имеет возможность оценить необходимость продолжения итерационного процесса или его остановку для сокращения времени расчета.
-
При расчёте на акселерограммы сейсмического воздействия с использованием 27 и 29 модулей динамики для расчетных моделей, состоящих из элементов или подсистем с различными демпфирующими свойствами, реализован расчёт эквивалентного затухания по j-ой собственной форме колебаний по следующей формуле: ξj={φj}T*∑[ξK]i*{φj}/{φj}T*[K]*{φj}
где {φj} – вектор j-й формы колебаний, [K] – матрица жесткости модели, ∑[ξK]i – матрица жесткости для i-го элемента или подсистемы, умноженная на коэффициент диссипации (коэффициент демпфирования в долях от критического) для этого элемента.
ГРУНТ
-
Реализован расчет упругого основания (“Метод 5”) по формуле (4) СНиП 2.02.05-87 "Фундаменты машин с динамическими нагрузками". Данная возможность позволяет определить коэффициент упругого равномерного сжатия Cz (C1z) при динамических воздействиях на фундамент.
-
Реализован расчет жесткостей одноузловых КЭ для моделирования горизонтальной жесткости закрепления фундамента в зависимости от С1z, назначенных на примыкающие элементы, или от С1z, заданного пользователем.
Примечание: также реализован расчет поворотной жесткости одноузловых КЭ, моделирующих качательную жесткость фундамента в целом. Следует отметить, что линейные жёсткости, распределённые по подошве фундамента - коэффициенты постели С1=Сz - также оказывают сопротивление повороту здания. Поэтому полученные поворотные жесткости одноузловых КЭ, распределённые по площади фундамента в соответствующих узлах, требуют корректировки пользователем.
Совет: предпочтительнее для введения податливых связей в фундаменте пользоваться КЭ57, а не КЭ51, поскольку в таком случае не будет появляться лишних жесткостей в списке жесткостных характеристик, и при этом мозаику жесткостей КЭ57 для визуализации и отчета можно получить из выпадающего меню “Мозаика жесткостных характеристик свай”.
-
Добавлена настройка объединения нагрузок не только по %, но и по минимальному абсолютному значению. Добавлена глобальная настройка в меню “Опции”.
-
Реализована возможность численно отображать характеристики ИГЭ на разрезе. Данное графическое представление можно использовать для документирования в Книге Отчетов.
-
Для КЭ пластин для которых выполняется расчет С1/С2 с использованием системы “ГРУНТ”, добавлен контроль направления местных осей Z1 для того, чтобы исключить случаи когда положительный отпор Rz не передается в исходные данные для уточнения между итерациями.
-
Расширен функционал задания грунтовой подушки:
- добавлена опция для формирования подушки переменной мощности “До подошвы слоя …”;
- сделана новая опция добавления веса подушки в дополнительные нагрузки (в таком случае бытовое давление считается от грунтов природного залегания).
Примечания:
В первом релизе версии 2022 была добавлена возможность задавать параметры грунтовой подушки для отдельных подгрупп импортированных нагрузок, и теперь весь набор новых параметров также может быть применен отдельно для разных участков фундамента, которым назначены отдельные подгруппы Pz.
В 2022 R1 и предшествующих версиях грунтовая подушка с точки зрения расчета задавалась только как часть естественного основания. При этом эпюра бытового давления строилась от грунтов большего веса (грунтов естественного залегания или грунта подушки, чтобы расчетом найти более консервативный результат - большую глубину сжимаемой толщи). Но эпюра от веса грунта из котлована (сигма-zy) в любом случае строится только от грунтов естественного залегания. Важный момент - для грунта подушки коэффициент перехода ко вторичной ветви нагружения необходимо задавать равным 1, поскольку подушка (замещающий грунт) не была деформирована от бытового давления грунта в природном залегании.
Начиная с релиза 2 версии 2022 появилась возможность автоматически формировать вес грунтовой подушки и добавить его к дополнительным нагрузкам (в том числе для подушек переменной мощности), таким образом грунтовая подушка уже может считаться частью фундамента, а не основания (поэтому для такого случая бытовое давление учитывается только от грунтов естественного залегания).
На рисунке ниже рассмотрен двухуровневый фундамент, в котором автоматически замещается природный грунт. При этом:
для нижнего фундамента грунтовая подушка задана, как часть основания (не формирует дополнительное давление - например, на стройплощадке выполнено замещение слабого грунта, осадка от веса замещающего грунта реализовалась, а затем было начато возведение фундамента и конструкций цоколя);
для верхнего фундамента подушка, замещающая слабый грунт, уже является частью фундамента, поскольку ее вес влияет на осадку уже возведенных частей фундамента и цоколя.
-
В параметрах групп свай добавлена опция, позволяющая к общей длине сваи добавить длину ее жесткой вставки, которая формируется автоматически, если голова сваи находится между пластинчатыми элементами плитного ростверка (ранее и сейчас без этой опции жесткая вставка формируется, уменьшая гибкую часть стержней, из которых состоит свая).
АРМ-САПР
-
Добавлена возможность проверки и подбора армирования на основании РСН(о) сформированных для задач динамики во времени.
-
Для норм СП РК EN 1992-1-1:2004/2011 выполнено разделение сочетаний усилий по группам (основное, аварийное и сейсмическое) и учет соответствующих характеристик материалов в расчете продавливания.
-
Для конструктивных элементов колонн, в которых подбирается арматура с учетом гибкости по номинальной кривизне организован единый вывод результатов подобранных площадей для всех элементов, входящих в конструктивный элемент. Данная особенность касается расчета по нормам СП РК EN 1992-1-1:2004/2011.
-
Для норм СНиП 2.03.01-84* в параметрах материалов «Бетон» добавлена опция «Уточнять схему образования трещин». Использование данной настройки приводит к тому, что вне зависимости от соотношения тензора ядровых моментов и момента трещинообразования Мб.т., будет выполнен расчет продольного армирования для плоского элемента.
-
Для норм СП РК EN 1992-1-1:2004/2011 исправлен учет коэффициента расчетной длины для конструктивных элементов. Ранее моменты для расчета Мэкв. принимались по концам КоЭ, но при этом коэффициент расчетной длины брался из длин отдельных КЭ.
-
Добавлен вывод результатов для случая, когда "Арматура наращивалась по условию обеспечения прочности в наклонных сечениях".
-
Модифицирован алгоритм подбора армирования для пластинчатых элементов по теории Карпенко для случая учета продольного изгиба.
СТК-САПР
-
Реализованы расчетные процедуры в соответствии с ДБН В.2.6-198:2014 Изменение №1.
-
Добавлена проверка/подбор сечений на основании РСН(о) сформированных для задач динамики во времени.
-
В локальном режиме расчета для типа элемента “колонна” добавлен отдельный вывод % использования по касательным напряжениям. Ранее результаты этой проверки попадали в итоговый % использования, что затрудняло анализ расчета.
РС-САПР
- Добавлены новые сортаменты сталей:
- ДСТУ 8539:2015 “Прокат для строительных стальных конструкций”;
- ДСТУ 8541:2015 “Прокат стальной повышенной прочности”;
- ДСТУ 8938:2019 “Трубы стальные бесшовные горячедеформированные”.
КИРПИЧ
-
Реализовано построение графиков изменения нагрузок для кирпичных уровней в задачах динамики во времени.
Система документирования «Книга отчетов»
-
При одновременном сохранении группы выделенных изображений “Книги отчетов” добавлена возможность, при установленном флажке “Применить для всех файлов”, изменить размеры остальных изображений (увеличить или уменьшить) в соответствии с пропорциональным увеличением или уменьшением первого изображения.
-
Для контроля и документирования исходных данных добавлена возможность представления комбинаций РСН в формульном виде.
- Добавлена возможность документирования характеристик грунтов и скважин с возможностью дальнейшей верстки.
- Добавлена возможность записи графиков изменения реакций во времени в формате
*.xls
,*.csv
. - Для таблиц усилий расчета на продавливание добавлен столбец с индексом группы усилий.
Контуры плит, оси, *.ifc, Autodesk Revit, сбор нагрузок, спецнагрузка, пересечения, спецификация металлопроката, массив свай, уровни, АЖТ, перемычки, стык, шкала армирования, канат, СП РК EN 1992-1-1:2004/2011, СП РК EN 1993-1-1:2005/2011, таблица РСУ, определяющая комбинация, модальный анализ, трехкомпонентная акселерограмма, металлическое сечение, коэффициенты постели, расчет на сейсмограмму, остановка расчета, трапециевидная нагрузка, загружение по формуле, конструктивные элементы, расчет прогибов
Интероперабельность
-
Для поэтажных планов исправлены ошибки при:
- создании двух контуров плит (фундаментных плит), если одна из их граней совпадает;
- создании осей по слою, если маркер оси и линия оси находятся в разных слоях.
- Улучшен экспорт балок в IFC файл.
- Исправлена ошибка вывода результатов армирования для связки ЛИРА-САПР и Autodesk Revit.
Препроцессор САПФИР-КОНСТРУКЦИИ
- Для инструмента “Спецнагрузка” добавлено отображение количества созданных нагрузок в диалоговом окне Редактор загружений.
- В свойства проекта добавлен параметр “Погрешность диагностики пересечений”, который используется при проверке плит перекрытия на пересечения.
- Для спецификации металлопроката добавлена возможность транспонирования таблицы из строк в столбцы.
- Ускорена работа с большими массивами свай (копирование, выделение, перенос объектов). Также ускорено открытие файлов с большими массивами свай.
- Улучшено автоопределение аналитических уровней этажа для случаев, когда в одном этаже много разноуровневых плит.
- Улучшено создание АЖТ колонна-стена для ситуаций, когда в схеме присутствовали жесткие вставки от колонны к стене.
- Устранена ошибка скрипта при попытке открыть папку расположения файла со стартовой страницы САПФИР, а также улучшена загрузка стартовой страницы при плохой скорости интернета.
- Восстановлена работа свойства проема “Применять к смежным стенам”.
- Улучшена работа команды “Зеркало” для проемов в плите и в стене.
- Устранена ошибка, при которой Плита с интерпретацией Нагрузка не попадала в расчетную модель.
- Исправлена ошибка, при которой в определенных ситуациях пропадало заполнение окон.
Панельные здания
- Для перемычки стержнем, которая задается в свойствах дверных и оконных проемов, восстановлено разбиение стержня по КЭ горизонтального стыка при передаче модели из САПФИР в ВИЗОР-САПР.
- Улучшена автоматическая расстановка стыков с помощью команды “Обработать” в инструменте Стык.
САПФИР-ЖБК
- Восстановлено обновление шкалы армирования при внесении изменений в параметры шкалы (цвет, диаметр, шаг).
- Улучшено формирование вида армирования стены для случаев, когда в стене есть проемы, привязанные от верха этажа с отрицательным значением смещения.
САПФИР-Генератор
- Улучшено запекание нодов.
- Восстановлена работа нода “Канат”.
- Устранена ошибка, связанная с отменой указывания нода, если перед этим было редактирование свойств другого нода.
Внимание!
Для некоторых моделей видеокарт Radeon выявлены проблемы совместимости.
Единая графическая среда, конструирующие системы и др.
- В расчете армирования по нормам СП РК EN 1992-1-1:2004/2011 уточнено влияние гибкости на значения расчетных моментов при учете эффектов первого рода.
- Для норм СП РК EN 1993-1-1:2005/2011 выполнено ускорение расчетных процедур подбора стальных сечений вида "прямоугольная труба".
- Для пластинчатых элементов исправлен вывод номера определяющей комбинации в информации о коэффициентах запаса заданного армирования.
- При выводе таблицы РСУ для контуров продавливания устранена сдвижка значений усилий в колонках таблицы.
- Исправлена ошибка построения мозаики для результатов подбора армирования стержней.
- В режиме просмотра результатов расчета восстановлено графическое отображение результатов для динамических загружений, у которых задан вид динамики "Модальный анализ".
- Исправлен учет масштабных множителей к трехкомпонентной акселерограмме (модуль динамики 29), если они были заданы равными 0.
- Уточнено вычисление значений глубины сжимаемой толщи Нс для слабо-сжимаемых грунтов.
- В диалоговом окне "Металлическое сечение" восстановлено отображение заданных данных по коррозии.
- Уточнены жесткостные характеристики сечения двутавра, заданного параметрически (без привязки к сортаменту), для случая заданного поворота сечения.
- В диалоговом окне "Информация об элементе" для КЭ 53 восстановлена видимость вкладки "Коэффициенты постели".
- Уточнен расчет на сейсмограмму в нелинейной динамике во времени.
- Модифицирован расчет фланцевого узла сопряжения металлических балок и примыкания балки к колонне, исправлены некоторые частные случаи вариантов сопряжения.
- При задании физически нелинейной жесткости для стандартных типов сечений восстановлен ввод параметров размещения арматуры для горизонтального армирования.
- Для норм проектирования ТКП EN 1992-1-1-2009 уточнено вычисление поперечной арматуры в железобетонных элементах.
- Исправлены ограничения по расчету на устойчивость для стальных сечений балок, колонн и ферм для норм СП РК EN 1993-1-1:2005/2011.
- Уточнены условия остановки расчета по заданному критерию для геометрически нелинейных задач.
- Исправлена ошибка привязок трапециевидной нагрузки для стержней переменного сечения.
- Уточнен перечень типов конечных элементов и условия назначения С1/С2 и Pz на стержни.
- Для норм проектирования СП РК EN 1992-1-1:2004/2011 при задании железобетонных материалов по умолчанию выбирается арматура класса C (значение коэффициента k=1.15).
- Исправлена ошибка расчета формульных загружений в случае, когда у входящего в формулу динамического загружения не было вычислено ни одной составляющей.
- В диалоговом окне “Жесткосткости и материалы” восстановлено задание жесткости для КЭ 341-344.
- Устранено возможное аварийное завершение программы при расчете армирования в задачах, содержащих конструктивные элементы.
- В расчете прогибов стальных элементов, выполняемом по РСУ для историй загружений, откорректирован учет усилий для группы В2.
- При формировании “Книги отчетов“ исправлены возможные проблемы создания таблицы РСУ в формате *.csv.
- Исправлена ошибка построения мозаики количества элементов, примыкающих к узлам.
- Расширена и дополнена контекстная справка.
коэффициент fvk, СП РК 2.03-30-2017, НТП РК 08-01.2-2021, СП РК EN 1998-1:2004/2012, перекосы этажей, коэффициент чувствительности, учет эффектов второго рода, таблицы ввода, глобальные и локальные несовершенства, СП PK EN 1990:2002+A1:2005/2011, определяющие РСН, МЕТЕОР, СП РК 5.01-102-2013, НТП РК 07-01.4-2012, эпюры прогибов, просадочные, набухающие и засоленные грунты, дополнительная осадка от консолидации и ползучести, СП РК EN 1992-1-1:2004/2011, метод номинальной кривизны и номинальной жесткости, подбор арматуры на действие перерезывающей силы, набор коэффициентов, заданное армирование, эксплуатационная пригодность, расчет дополнительного армирования, СП РК EN 1993-1-1:2005/2011, определяющие усилия, диссипация сейсмического воздействия, пластическая работа, сбор ветровой нагрузки, создание стержневых аналогов, комбинации нагрузок
ИНТЕРОПЕРАБЕЛЬНОСТЬ - компоненты технологии ВIM
- В новой версии расширены возможности двусторонней связки Autodesk Revit. Реализована BIM интеграция с Autodesk Revit 2023. Адаптирована работа по экспорту как физической, так и аналитической модели. Создана возможность импорта только аналитической модели из Revit 2023.
- Для Autodesk Revit 2022 и Autodesk Revit 2023 добавлена возможность импортировать результаты армирования с учетом измененной аналитической модели. В настройках импорта указывается окрестность и угловая точность с которыми будут находиться наиболее подходящие стержни для балок, колонн, а также пластины для стен и плит.
- Настройка импортированной аналитики. Разработан инструмент, позволяющий импортировать отредактированную пользователем аналитическую модель.
- Для контроля армирования пластинчатых элементов разработан специальный инструмент, который позволяет автоматически выделить цветом недоармированные зоны в пластинчатых элементах. Данный инструмент взаимодействует как с армированием в виде сеток - “Распределенная”, так и с объектом “Армирование по траектории”.
- Разработан двусторонний конвертер Tekla Structures 2022 – ЛИРА-САПР – Tekla Structures 2022. Конвертер Tekla Structures – ЛИРА-САПР – Tekla Structures позволяет в полном объеме выполнять расчет и проектирование металлических и железобетонных конструкций.
- Разработана возможность при импорте IFC файла выполнить настройку параметров IFC, т.е. выставить соответствие между параметрами IFC объекта и параметрами объекта САПФИР. Настройка соответствий параметров может выполняться для каждого типа объектов IFC.
- Разработан и адаптирован новый инструмент импорта файлов DWG формата. Это позволяет использовать данный формат:
- в виде плоских “подложек” которые могут быть основой для построения модели в Сапфире;
- как основу для наполнения библиотеки типовых узлов с последующим формированием чертежей;
- для автоматической генерации модели по поэтажным планам DWG.
- Для поэтажных планов DXF/DWG добавлены возможности:
- выполнить импорт спецэлементов КЭ 55;
- выполнить импорт вертикальных линий триангуляции для стен
- Улучшен инструмент, который позволяет экспортировать используемые в проекте типы армирования (ТА) для колонн в DXF файл.
- Добавлен импорт новых объектов SAF:
- Нагрузки на плиты - сосредоточенная нагрузка, сосредоточенный момент, линейная равномерно-распределенная нагрузка, линейный момент, линейная трапециевидная нагрузка, плоскостная нагрузка;
- Нагрузки на колонны - сосредоточенная нагрузка, сосредоточенный момент, линейная равномерно-распределенная нагрузка, линейный момент, линейная трапециевидная нагрузка;
- Нагрузки на стены - сосредоточенная нагрузка, сосредоточенный момент, линейная равномерно-распределенная нагрузка, линейный момент, линейная трапециевидная нагрузка, плоскостная нагрузка;
- Нагрузки на балки - сосредоточенная нагрузка, сосредоточенный момент, линейная равномерно-распределенная нагрузка, линейный момент, линейная трапециевидная нагрузка;
- Условия опирания - шарниры в колоннах, шарниры в балках;
- Опоры под колонну, опоры в узлах плиты;
Препроцессор САПФИР-Конструкции
ТРИАНГУЛЯЦИЯ
- Усовершенствован инструмент, позволяющий в автоматизированном режиме создавать области триангуляции для плит:
- в дополнение к областям триангуляции для плит, расположенных над стенами, появилась возможность создавать области триангуляции для плит под стенами с отступом от стены в 4-х направлениях и индивидуальным шагом триангуляции;
- доработан алгоритм формирования контуров триангуляции, обеспечивающий более качественную триангуляцию плит в местах примыкания стен.
- Реализована возможность автоматизировать сгущение сети триангуляции для плит вблизи отверстий. В свойствах проема можно задать шаг точек триангуляции вокруг проема, количество рядов точек с фиксированным шагом и общее число рядов точек триангуляции. После рядов с фиксированным шагом триангуляции программа создает несколько рядов с переходным шагом, чтобы “смягчить” переход от мелкой сети у проема к более крупной в пролете.
- В свойства расчетной модели добавлен параметр “Улучшать триангуляцию у пересечений”, позволяющий избежать создания узких треугольных КЭ, если выбран крупный шаг триангуляции для схемы. При активации данной опции в местах, где должны были бы появиться узкие треугольные КЭ, выполняется сгущение триангуляционной сети и формируются более качественные КЭ.
- Расширены возможности нода “Создание сетки на стене”, который с заданным шагом триангуляции формирует горизонтальные и вертикальные линии триангуляции в стене. Для нода добавлены новые параметры:
- “Список отметок”, позволяющий задать интервалы горизонтальных линий триангуляции от низа стены и между собой;
- “Интервалы по проемам”, позволяющий адаптировать линии триангуляции стены под вертикальные линии триангуляции от проемов, если такие заданы в свойствах проема.
НАГРУЗКИ
- Расширены возможности диалогового окна "Суммирование нагрузок". Теперь он работает не только с аналитической, но и с расчетной моделью.
- Реализована возможность передавать нагрузку от подколонника в модель грунта. В свойствах колонны появился блок свойств, позволяющий назначить аналитическому представлению подколонника распределенную нагрузку на грунт Pz, коэффициенты постели С1 и С2, горизонтальную жесткость опирания плиты на грунт Сх и Сy, условия опирания или граничные условия.
- Выполнена оптимизация отрисовки визуальных моделей нагрузок. В версии 2022 модель с большим количеством нагрузок вращается, панорамируется и зуммируется в 1,5 раза быстрее чем в версии 2021. Данный параметр активируется в диалоговом окне Настройки САПФИР/Визуализация/Упрощенная отрисовка нагрузок.
- Реализован ручной режим приложения ветра, когда ветровая нагрузка автоматически не формируется, а для пульсационного загружения используются статические нагрузки, заданные пользователем.
- Добавлена визуализация ветровой нагрузки в архитектурной модели с возможностью “заморозить” ветер. Данная опция позволяет отключить/включить автоматическую регенерацию ветра при изменении геометрии конструкции.
- При автоматическом способе приложения ветра напор/отсос в пространстве, появилась возможность сбора ветра на боковые стены (зоны A, B, C) с указанием аэродинамического коэффициента для каждой зоны.
- Реализован сбор ветровой нагрузки для плоских, двускатных и односкатных кровель в соответствии с нормами СП РК EN 1991-1-4:2005/2017
- Оптимизирован сбор ветровой нагрузки на стержневые элементы. Теперь учитываются углы наклона стержня и углы поворота сечения. Возможность корректировки коэффициента восприятия нагрузки для каждого элемента.
- Разработаны инструменты для создания специальной параметрической нагрузки. Данная нагрузка передается в ВИЗОР-САПР в виде распределенных по площади нагрузок на пластинчатые элементы или в виде нагрузок, распределенных по длине стержневых элементов, а не нагрузкой штамп. Интенсивность нагрузки может быть задана через параметры “Нагрузка на площадь, тс/м2” для пластинчатых элементов или “Погонная нагрузка, тс/м” для стержневых элементов. Нагрузка может быть приложена по нормали к КЭ. В таком случае становится доступным еще ряд параметров для моделирования давления жидкости и газа на стенки резервуара.
- Значительно упрощена процедура сбора нагрузок с поверхности или плиты и перераспределения их на балочную клетку произвольной конфигурации. Для распределения нагрузок используются плиты перекрытия или поверхности со специальной новой интерпретацией “Посредник для нагрузки” и нагрузки с опцией “Через посредники”. Во время создания расчетной модели активируется опция “Распределить нагрузки на балки через посредники” при которой программа автоматически выполняет все дальнейшие действия: пересечения, триангуляцию, назначение опор и расчет. По результатам расчета САПФИР формирует неравномерно-распределенные линейные нагрузки на балки. Для каждого элемента есть возможность корректировки коэффициента восприятия нагрузки
- Для нагрузки-штамп добавлена возможность выполнить отсечение контура по линии, плоскости (штриховке), контуру других объектов.
- Для всех объектов, у которых есть интерпретация Нагрузка, добавлен параметр “Дополнительное загружение”, который позволяет управлять размещением этой нагрузки в дополнительном или послестадийном загружении для монтажа.
АНАЛИТИКА
- Реализован инструмент “Вентканал”, который автоматически вырезает проемы в тех стенах и плитах, которые пересекает. Проемы могут быть созданы точно по форме вентканала или с заданным отступом. Все проемы являются ассоциативными и при изменении расположения вентканала или его размеров выполняется автоматическое обновление проемов.
- Добавлена возможность выполнить создание наклонной колонны. В свойствах объекта указывается угол наклона и направление наклона колонны. Для наклонной колонны доступен практически полный набор свойств вертикальной колонны: изменение параметров жесткости, формирование АЖТ, назначение условий опирания и граничных условий, формирование точек триангуляции и др.
- Реализована автоматическая генерация стержневых аналогов в системе САПФИР. Для создания стержневого аналога (СА) распознаются простые прямоугольные сечения из:
- линейных участков стены;
- прямоугольной в плане плиты;
- перемычки над проемом и под ним;
- пилонов или балок, представленных в расчетной модели пластинчатыми КЭ.
В свойствах СА можно указать количество участков СА, что будет равно количеству целевых стержней СА в ВИЗОР-САПР. Также разбивку СА можно указать через шаг аппроксимации.
Для создания СА из стен или плит в свойствах соответствующих объектов добавлена опция.
В свойства дверных и оконных проемов в дополнение к возможности заменить область над проемом на стержень добавлена возможность сохранить моделирование области над проемом пластинчатыми элементами и сгенерировать перемычку в виде СА. Аналогичным образом можно сгенерировать СА и для подоконной зоны.
Для балок прямоугольного сечения появилась возможность сформировать СА в виде тавра. Программа автоматически распознает высоту тавра, а ширину полок тавра можно задать в свойствах СА.
- Усовершенствована “Проверка модели”:
- уменьшено количество предупреждений, которые не являются критическими;
- усовершенствован алгоритм поиска пересекающихся контуров плит для случаев, когда плиты имеют сложный контур в плане;
- в дополнение к поиску дублирующихся объектов добавлен поиск объектов, чьи аналитические модели частично пересекаются между собой, что позволит избежать ряда ошибок в расчетной модели;
- при проверке модели на совпадение или пересечение объектов добавлен учет объектов с разных этажей.
- Разработаны инструменты для создания подпорной стены и плиты переменной толщины. Контур сечения подпорной стены задается через диалоговое окно “Параметры сечения”. Для плиты переменной толщины указываются наименьшая и наибольшая толщины плиты. Аналитическая модель подпорной стены и плиты переменной толщины представлена в виде нескольких пластин разной толщины. Количество пластин задается через параметр “Число разбиений аналитической модели“ в свойствах плиты/стены. Пластины могут быть соосны или смещены относительно друг друга на жесткие вставки.
- Добавлена возможность выполнить редактирование контура стены в плоскости стены.
- Для колонн и балок добавлена возможность задать переменное сечение для всех стандартных сечений САПФИР.
Обратите внимание, что в ЛИРА-САПР переменное сечение может быть только брус и двутавр, то есть после импорта переменных сечений бруса и двутавра они сохранят свои параметры. В другом случае, после импорта стержень разбивается на части с нарастающей жесткостью.
- Разработаны инструменты для разделения стены колонной. В свойствах колонны появился новый параметр “АЖТ колонна-стена”, который позволяет создать абсолютно жесткое тело (АЖТ) между торцами стен и колонной. АЖТ является ассоциативным, т.е. при перемещении одной из стен или колонны сохраняется связь между объектами.
- Реализовано опциональное отображение сети КЭ в физической модели. Опция становится доступной после выполнения триангуляции и сохранения
*.s2l
файла для передачи в ВИЗОР-САПР. - В аналитической модели реализовано отображение созданных АЖТ (заданных, как свойство и сформированных в результате поиска пересечений). АЖТ отображаются в виде оранжевых линий, соединяющих между собой узлы, которые входят в состав АЖТ.
- Добавлен ряд инструментов, позволяющих оценить качество сформированной триангуляционной сети: мозаики качества пластин, площади пластин, минимальные углы пластин, минимальные длины ребер пластин, длины стержней и угол поворота стержней.
- Добавлена команда “Выровнять” для выравнивания стен по вертикали. Существует два режима выравнивания: по параллели - после выравнивания они будут параллельны относительно выбранной стены, но не соосны; по вертикальной соосности - после выравнивания они будут параллельны и вертикально соосны относительно выбранной стены.
- Добавлена возможность выделения однотипных объектов горизонтальной плетью. Выделение осуществляется с помощью команды “Выделить по горизонтали”. Реализовано выделение следующих объектов:
- Колонны;
- Сваи;
- Стены;
- Балки;
- Плиты;
- Фунд плиты;
- Точечная нагрузка;
- Линейная нагрузка.
- В свойства проекта добавлены допуски для аналитических моделей объектов:
- настройка минимальной высоты “порожка” двери для аналитических моделей стен;
- коэффициент отклонения толщин стен при преобразовании контура в стены.
- Усовершенствован инструмент “Лестница”:
- расширены варианты опираний для лестниц. Появилась возможность назначить опирание марша на лестничную площадку и плиты перекрытий в виде объединения перемещений по Z, по Х и Y или выбрать пользовательское опирание;
- добавлено автоматическое согласование местных осей лестницы при передаче модели в ВИЗОР-САПР.
- В диалог “Привязка базовой точки” добавлен выбор расположения аналитического представления балки и колонны внутри сечения.
- Усовершенствован инструмент “Шахта” для работы с уровнями этажей и дополнительными уровнями внутри этажа. Создание отверстий по контуру шахты происходит автоматически во всех плитах через которые проходит шахта.
- Добавлена новая функциональность для объекта “Прочее”:
- в свойствах объекта “Прочее” можно выбрать функцию “Вентканал” и таким образом выполнить автоматическое создание отверстий во всех стенах и плитах, которые пересекает данный объект “Прочее”;
- команда “Рассечь по этажам” расширена также и на “Прочее”.
- Для капители и подколонника добавлена возможность выполнить создание ступеней только в одном направлении.
- Реализовано структурирование спецификации металлоконструкций по номинативным типам элементов: колонна, балка, фахверк, связь, шпренгель, подпорка, распорка, раскос, прогон, канат.
- Для существующей команды Обрезать реализована опция Удлинить, которая позволяет удлинить под указанную линию все линейные объекты САПФИР. Команда доступна в 3D видах, на планах этажей, на фасадах, сечениях, разрезах и на чертежах.
- Реализована возможность выполнить сохранение файла САПФИР вместе со всеми файлами, которые с ним связаны (SLD - модель грунта, DXF, DWG, IFC, SAF, XLS и ASP - результаты армирования) в отдельную папку проекта. Аналогичным образом можно создать архив проекта.
- В панели Структура проекта добавлена возможность управления видимостью объекта через соответствующую кнопку.
- Также добавлено отображение названия сечения и автоматическая сортировка элементов - элементы с одним типом и размером сечения находятся рядом в списке.
- В панели Виды произошли некоторые изменения и улучшения, а именно:
- виды армирования после создания попадают в новый раздел КЖ;
- добавлена сортировка в алфавитном порядке;
- добавлена возможность перемещения видов армирования по древу с помощью соответствующих кнопок;
- добавлена возможность создания пользовательских разделов; перемещение видов армирования по разделам с помощью “drag`n`drop”;
- добавлена возможность изменения имени раздела;
- автоматическая сортировка видов армирования по типам КЖ;
- добавлена возможность сохранения позиции камеры;
- групповое выделение с последующим перемещением или удалением видов.
- Расширена функциональность стартовой страницы:
- добавлено контекстное меню для последних открытых файлов, позволяющее открыть папку в которой лежит выбранный файл или удалить файл из списка последних открытых;
- добавлена команда Импорт, чтобы сразу импортировать файлы без необходимости создавать пустой файл
*.spf
.
ЧЕРТЕЖИ
- В версии САПФИР 2022 была реализована возможность поместить на лист чертежа произвольное изображение, импортируемое из файлов популярных растровых форматов (PNG, JPEG, BMP). После импорта рисунка есть возможность изменять его плотность, размер, пропорцию сторон.
ВИЗОР-САПР
-
Добавлены новые таблицы ввода:
- таблицы ввода загружений и расчетных сочетаний нагружений для норм СНиП 2.01.07-85*, ЕвроКод, ACI 318-95 (США), BAEL-91 (Франция), IBC-2000 (США), ДБН В.1.2-2:2006 (Украина), СТБ ЕН 1990-2007 (Беларусь), СП 20.13330.2011/2016 (РФ), СП РК EN 1990:2002+A1:2005/2011 (Казахстан), ТКП EN 1990-2011*(02250) (Беларусь), EN 1990-2011;
- таблица ввода с возможностью задания и прямой корректировки усилий в стержнях текущей задачи;
- таблица ввода для формирования масс из статических загружений.
Использование таблиц ввода делает ввод данных более прозрачным и облегчает передачу данных между расчетными схемами. Таблица ввода усилий позволяет откорректировать усилия перед вычислением их комбинаций.
-
Реализован расчет контуров продавливания в случае учета «тела» колонны стержнями большой жесткости (СБЖ). Свойства стержней большой жесткости, в отличие от АЖТ, можно корректировать. Это позволяет при необходимости изменить жесткость, задать нагрузку, управлять степенями свободы СБЖ и т.д. Таким образом появляется возможность, например, смоделировать смятие торцов пилона; уменьшить концентрации напряжений по периметру примыкания “плита-колонна” при нагреве, когда плита и стержни большой жесткости прогреваются совместно.
-
Появилась возможность вычислять комбинации загружений РСН и РСУ для выбранных конечных элементов. Перечень КЭ выбирается из предварительно заданного списка элементов. Список элементов может быть сформирован для фрагмента схемы, отмеченных КЭ, а также задан вручную. Кроме того, разработанный интерфейс позволяет управлять и настройками расчета, отключая лишние вычисления на конкретном этапе работы с расчетной схемой. Все это позволяет значительно экономить время расчета задач.
-
В расчетах РСН и РСУ реализован учет отброшенных и невычисленных форм колебаний.
-
Реализована автозамена типа конечного элемента при назначении жесткости. При назначении жесткостей элементам схемы выполняется диагностика соответствия назначаемого типа жесткости и типов КЭ. При обнаружении несоответствия можно выполнить автозамену типа КЭ.
-
Добавлена команда, позволяющая в любой момент работы с расчетной схемой блокировать редактирование данных, которые могут повлиять на результаты МКЭ расчета, и опция, позволяющая выполнять автоблокировку редактирования данных для МКЭ расчета после его завершения.
Внимание!
При включенной команде “Запрета редактирования данных для МКЭ расчета”, остаются доступными для редактирования и выполнения расчета сочетания усилий РСУ и РСН, главные и эквивалентные напряжения в конечных элементах (ЛИТЕРА), реакции/нагрузки в узлах (Нагрузка на фрагмент) и конструирование с помощью имеющихся в ПК ЛИРА-САПР систем (подбор армирования, проверка заданного армирования в железобетонных и сталежелезобетонных элементах, проверка и подбор поперечных сечений стальных элементов, расчет элементов из кладки, подбора арматуры в армокаменных конструкциях).
Также после статического и динамического расчета схемы для выполнения конструктивного расчета можно выполнить корректировку жесткостей. Для режима Железобетонные и Армокаменные конструкции изменения могут касаться только габаритов сечения, т.е. изменения размеров сечения. Для режима Стальные конструкции – добавления нового типа сечения металлопроката, а также смены номера профиля ранее созданного сечения.
-
Реализована автоматическая отметка элементов, примыкающих к отмеченным узлам и/или элементам. Повторное выполнение команды расширяет зону выделения.
-
При отметке элементов путем указания высотных отметок и координационных осей учитываются все установленные фильтры в диалоговом окне «Полифильтр».
-
Также добавлены фильтры, позволяющие отметить элементы, которым не назначены материалы (ж/б, металл, кладка), то есть у которых отсутствуют исходные данные для выполнения расчетов конструирования.
-
В диалоговом окне «Показать» добавлена новая настройка, позволяющая отобразить на схеме расстояние между высотными отметками.
-
Если при помощи настроек в диалоговом окне «Показать» отключается показ одноузловых элементов, стержней, пластин, объемных элементов и целевых стержней стержневых аналогов, то автоматически скрываются и узлы, принадлежащие этим элементам.
-
Информация об узлах и элементах расчетной схемы обновлена и дополнена информационными вкладками, описывающими исходные данные и результаты новых реализованных видов расчетов.
-
Добавлена новая опция визуализации шкалы мозаик, при включении которой выводится количество объектов в процентном соотношении, входящих в каждый диапазон.
-
Реализовано отображение изменений реакции в узлах во времени при включенной анимации результатов расчета “Динамики во времени”.
-
Реализована возможность сохранения графиков кинетической энергии в формате
*.csv
-
Улучшено задание простых контуров триангуляции:
- добавлена опция фиксирования координат указанных курсором при задании контура триангуляции “По координатам”;
- доработан режим завершения ввода контура триангуляции по нажатию клавиши
Enter
; - добавлена настройка точности при задании контура триангуляции с использованием клавиши
Shift
для учета промежуточных узлов. -
При задании контуров триангуляции с отверстиями при выборе дополнительных узлов автоматически отбрасываются узлы, которые находятся за пределами внешнего контура, в области внутренних контуров и на самих контурах.
-
Добавлена возможность сохранения отметки в процессе корректировки конечно-элементной сети при установленном флажке «Только для отмеченных элементов» в диалоговом окне “Преобразование сети пластинчатых КЭ”.
-
Добавлен новый инструмент “Вычислить спектр” для выполнения преобразования графиков зависимости ускорения (скорости, перемещения) от времени в сейсмограмму, велосиграмму, акселерограмму и график спектра ответов. ReSpectrum
-
Для модулей динамики 27 и 29 при построении узловых спектр-ответов:
- появилась возможность учитывать демпфирование осцилятора, отличное от системного (пользовательское);
- добавлен способ суммирования по формам колебаний без учета сдвига фаз;
- реализовано расширение площадки пика спектр-ответа, а также снижение амплитуды узкочастотного пика.
-
Добавлена возможность цветовой настройки направлений главных осей N1 и N3 для пластинчатых элементов.
-
При моделировании нелинейных загружений конструкции для “Шагового метода” расчета добавлена функция, которая позволяет формировать набор нелинейных загружений на основе сформированных сочетаний РСН.
-
Добавлена возможность структурировать нелинейные загружения с помощью команд “Переместить вверх” и “Переместить вниз”.
-
Также добавлена функция множественного редактирования выбранных историй или локальных загружений с помощью команды “Изменить” для всех методов расчета.
-
Для физически нелинейных задач с использованием итерационных элементов реализован инструмент для просмотра, исследования и документирования вычисленных параметров напряженно-деформированного состояния для стандартных, стальных типов сечений и пластин. В диалоговом окне “Состояние сечения” доступны следующие результаты расчета для выбранного в режиме получения информации итерационного элемента:
- мозаика нормальных напряжений в основном/армирующем материале пластин и стержней;
- мозаика относительных деформаций в основном/армирующем материале пластин и стержней;
- мозаика касательных напряжений ꚍxy в основном материале пластин;
- мозаика относительных деформаций ɣxy в основном материале пластин;
- мозаика максимального напряжения σmax в основном материале пластин;
- мозаика относительных деформаций εmax в основном материале пластин.
Диалоговое окно «Состояние сечения»: мозаика напряжений в основном и армирующем материале
-
Добавлена опция для управления режимом синхронизации просмотра видов расчетов в строке состояния: загружений, РСН, РСУ, форм (составляющей, периода форм колебаний и потерь устойчивости), слоя для просмотра вычисленных главных и эквивалентных напряжений, промежуточных шагов в нелинейных задачах, шагов интегрирования динамики во времени. B этом режиме изменения, производимые c графическим отображением расчетной схемы в одном окне, автоматически распространяются на все открытые окна всех расчетных схем.
-
Для определения центра масс по результатам расчета в меню “Суммирование нагрузок” реализован новый режим расчета, как для всей расчетной схемы, так и для выделенных элементов и узлов.
-
Реализованы новые режимы мозаик:
- мозаики максимальных напряжений в армирующем материале и максимальных относительных деформаций арматуры по направлениям X1, Y1 для итерационных пластин;
- мозаики назначенных на конечные элементы законов нелинейного деформирования для основного, армирующего материалов и законов ползучести бетона;
- мозаика суммарной площади заданного продольного армирования в стержнях;
- мозаика коэффициентов неупругого поглощения энергии Fmu;
- мозаика конденсации масс;
- мозаика динамических масс в элементах.
-
Модифицированы и расширены новыми командами панели ленточного интерфейса, а также меню и панели инструментов классического интерфейса.
-
Добавлена возможность задавать комментарии к нагрузкам, данная возможность упростит работу смежных исполнителей при работе с одной расчетной схемой.
-
Добавлена возможность создавать и редактировать жесткие вставки для отмеченных КЭ входящих в конструктивные элементы (КоЭ). Для выполнения этой операции в текущем варианте конструирования выполняется поиск КоЭ, которым принадлежат отмеченные КЭ. Для всей цепочки КЭ каждого КоЭ рассчитывается значения жестких вставок так же, как если бы цепочка КЭ образовывала единый стержень. При задании жесткой вставки по оси X1 изменения применяются только к первому и последнему КЭ.
-
При упаковке совпадающих элементов приоритет сохранения отдается тем элементам, к которым приложена нагрузка.
-
При использовании функции расчета расхода бетона и арматуры добавлена возможность выбора результата, если у стержней задан тип армирования “симметрия и несимметрия”.
-
В новой версии при копировании динамических загружений выполняется копирование данных о заполненной таблице преобразования статических загружений в массы, а также настройки таблицы динамических загружений.
-
Для удобства формирования списка задач и дальнейшей корректировки настроек формирования обобщенной задачи в системе “МЕТЕОР” реализована возможность добавить файл обобщенной задачи
*.t8m
в текущий список задач. -
Ускорен вывод огибающих результатов MIN/MAX/ABS по загружениям/РСН/РСУ.
-
Знаки усилий для КЭ 55,255,265,295 зависят от порядка нумерации узлов этих элементов, а сами усилия вычисляются на основании разности перемещений между вторым и первым узлами. В диалоговом окне “Местные оси для КЭ 55,255,265,295” добавлена команда позволяющая поменять местами узлы, описывающие эти элементы.
-
Разработан инструмент позволяющий выполнить назначение коэффициентов жесткостей на элементы, а также добавлена мозаика их визуализации.
-
Добавлена команда, которая позволяет при разделении отмеченного стержня на два других в соответствии с заданным расстоянием выбрать узел стержня, от которого будет выполнено смещение.
-
Для команды копирования по одному узлу, добавлена возможность выбора нескольких узлов вставки.
-
Для функции “Ввести узел на расстоянии L” добавлена возможность выбора узла (начало/конец стержня) относительно которого будет производится вставка нового узла.
-
При использовании опции расчета “Формировать дополнительные узлы на сторонах КЭ” для пластин с заданным нулевым модулем упругости, узлы на сторонах формироваться не будут.
Подзадачи vs Блоки расчета
До версии 2022 расчетная схема могла иметь единственный набор жесткостных характеристик и граничных условий. Однако существуют задачи, в которых жесткости элементов должны отличаться в зависимости от длительности действия нагрузок. Например, при динамических расчетах, как правило, требуется переходить от модуля деформаций к модулю упругости грунта, данный подход также используется и для материалов конструкции. До сих пор можно было изменять только жесткость отдельных элементов конструкции для выбранных стадий монтажа с помощью “Монтажных групп”. В версии 2022 введена возможность задавать жесткости не только для стадий монтажа, но и для произвольного набора загружений. Набор загружений, для которого расчетной схеме заданы отдельные жесткости, назовем подзадачей или блоком расчета.
В первом релизе версии 2022 добавлена возможность в рамках одной модели использовать разные наборы коэффициентов упругого основания (Pz, C1, C2, C1z, C2z, C1y, C2y) и разные коэффициенты к модулю упругости. Уникальный набор может быть сформирован для каждого загружения расчетной модели – статического, динамического, каждой стадии монтажа, каждого загружения нелинейной истории и т. д. Наличие разных наборов влияет на автоматическое разделение на блоки загружений. Загружения (статические и динамические), которые могут быть рассчитаны на одной матрице жесткости, объединяются в единый блок загружений. Еще один критерий разделения на блоки — это наличие/отсутствие заданных перемещений в загружениях. Т.е. если в одном загружении в каком-то узле по какому-то направлению задано перемещение, а в каком-то другом загружении в этом же узле в этом же направлении перемещение не задано, и связь по этому направлению не задана, то эти загружения будут разделены на отдельные блоки расчета.
Конечно-элементный расчет задачи, в которой заданы подзадачи, выполняется следующим образом. МКЭ-процессор обнаруживает в файле исходных данных МКЭ-расчета подзадачи. Для каждой подзадачи выполняется МКЭ-расчет как для отдельной задачи, т.к. формируется новая матрица жесткости. После расчета результаты всех подзадач сливаются в результаты исходной задачи. Полученные таким слиянием результаты далее используются для всех возможных расчетов РСУ/РСН и конструктивных расчетов (ж/б, металл, кирпич).
Внимание!
Для моделей с подзадачами действуют следующие ограничения:
- для суперэлементов задавать наборы коэффициентов упругого основания не допускается. У них по прежнему формируется единая матрица жесткости;
- устойчивость по РСН может быть вычислена только в случае, если все загружения, входящие в РСН, принадлежат одной подзадаче;
- нельзя использовать коэффициенты к модулю упругости для нелинейных КЭ;
- коэффициенты к модулю упругости не используются в расчете “Инженерной нелинейности 1”.
Из неочевидного:
- в динамике во времени используется набор, который задан для загружений с динамическими нагрузками (загружения предыстории могут иметь свои наборы);
- в расчете PushOver используется набор, который задан для загружения с инерционными силами;
- в расчете ползучести используется набор, который задан для последнего загружения нелинейной истории.
Создание подзадач и привязка их к соответствующим загружениям выполняется через диалоговое окно “Редактор загружений”.
По умолчанию подзадачи в файле модели не созданы, в выпадающем списке "Подзадача" содержится всего одна строка "Основная задача" и окно работает так же, как работало окно "Редактор загружений" в 2021 версии. При отсутствии подзадач все загружения относятся к основной задаче.
Нажатие на кнопку [...] открывает окно "Подзадачи" (см. Рисунок - Создание наборов свойств для подзадач). В этом окне можно создать произвольное количество подзадач. Основную задачу нельзя удалить из списка подзадач. После этого можно каждое загружение включить в определенную подзадачу.
Когда загружение становится активным, активизируются данные подзадачи. То есть, когда мы переключаем активное загружение, мы видим на мозаиках C1, C2 коэффициенты постели, соответствующие подзадаче, в которую входит активное загружение. Аналогично в окне "информация об элементе" переключение загружения переключает и коэффициенты постели C1/C2, соответствующие задаче (см. Рисунок - Наборы коэффициентов упругого основания для разных загружений).
В параметрах таблиц ввода "С1С2 Пластины", "С1С2 Стержни" и "С1С2 Спецэлементы" появился новый параметр "Подзадача", (см. Рисунок - Редактирование набора коэффициентов упругого основания с помощью “Таблицы ввода”), т.е. таблицы ввода также могут использоваться для заполнения/редактирования коэффициентов упругого основания подзадач.
Для назначения коэффициентов к модулю упругости разработан специальный инструмент, с возможностью визуального контроля назначенных значений с помощью мозаики.
Важно!
При решении задач на заданное смещение узлов в настройках расчета появилась новая опция, которая управляет установкой связей по соответствующим направлениям действия нагрузки в других загружениях.
МКЭ-процессор
-
Добавлено формирование файла с подробной информацией о состоянии материалов (основного и армирующего) в сечениях итерационных физически нелинейных элементов. Данная возможность доступна для стержней всех типов сечений и пластин.
-
Реализована нелинейная теплопроводность для стержневых, пластинчатых и объемных КЭ. Теперь стало возможным создавать законы изменения коэффициента теплопроводности, коэффициента теплоемкости и удельного веса в зависимости от температуры.
-
Реализована нелинейная теплопроводность для пластин. Можно задавать законы изменения коэффициента теплопроводности, коэффициента теплоемкости и удельного веса от температуры.
-
В расчете на устойчивость появилась возможность относить элементы схемы к одному из следующих двух классов: к классу удерживающих и к классу толкающих элементов системы. Удерживающие элементы способствуют сохранению устойчивости равновесия системы, тогда как роль толкающих элементов отрицательна, поскольку именно они вынуждают систему к потере ею устойчивости. Коэффициент чувствительности для удерживающих элементов > 0, а у толкающих < 0.
-
При расчёте на сейсмическое воздействие с применением линейно-спектрального метода реализован учет отброшенных и невычисленных форм колебаний по методике, которую используют в расчетах сооружений АЭС. Соответствующая настройка расчета становится доступной при задании данных в диалоговом окне “Задание характеристик для расчета на динамические воздействия”.
-
Реализована возможность совместной работы компонент (степеней свободы) по заданному графику для КЭ 255, 256. Можно задавать графики работы для векторных сумм следующих компонент: (X+Y) и (X+Y+Z). График описывается 3-мя значениями — 1-й модуль упругости (R, т/м), 2-й модуль упругости (R2, т/м), перелом графика (N, т). Можно задавать любой набор графиков для отдельных компонент и комбинаций векторных сумм компонент, но каждая компонента может участвовать только один раз. Т.е., например, если описан график работы отдельно для X, то X уже не может участвовать ни в одной из комбинаций векторных сумм. Результаты для КЭ 255, 256 выдаются как и раньше — усилия по соответствующим направлениям локальной системы координат Rx,Ry,Rz, Rux,Ruy,Ruz. Например, это необходимо для моделирования сейсмоизоляторов в виде резинометаллических опор, которые имеют круглое поперечное сечение. На рисунке ниже показано, что заданные параметры равного значения отдельно по локальным осям Х1 и Y1 приведут к контролируемому достижению перемещений и предельных усилий только в направлении этих осей, а воздействие под любым другим углом даст их векторную сумму, где контролируемые параметры перемещений будут больше, чем требуется для круглого сейсмоизолятора. Поэтому теперь, задав параметры для векторной суммы компонент (X+Y), мы получим контролируемые величины параметров для воздействия под любым углом в плане.
-
Решена проблема с расчетом на пульсацию ветра (модуль динамики №21), когда формы, имеющие частоту меньше предельной, не совпадали с направлением статического ветра и соответственно вычисленные инерционные силы получались близкими к нулю. Разработана формула для вычисления модальных масс в расчете пульсационной составляющей, на основании которой вычисляются модальные массы для всех форм в этом расчете. В диалоге «Параметры расчета на ветровое воздействие с учетом пульсации» добавлен параметр «Минимальная сумма модальных масс форм, имеющих частоту меньше предельной, для расчета по варианту (в) п. 6.7 СНиП 2.01.07-85» в процентах.
Теперь если сумма модальных масс форм колебаний, имеющих частоту меньше предельной, меньше заданного значения суммы модальных масс в % или таких частот вообще нет, то расчет идет по варианту (а) п. 6.7 СНиП 2.01.07-85, иначе по варианту (в) этого же пункта.
В таблице периодов колебаний для расчета на пульсацию выводятся модальные массы форм колебаний, так же как это делается для однокомпонентного сейсмического воздействия.
-
В библиотеку КЭ добавлены новые конечные элементы-аналоги существующих КЭ 56 и КЭ 62 – это одноузловой демпфер с шестью степенями свободы КЭ 66 и двухузловой демпфер КЭ 65. В описании “жесткости” новых КЭ можно задать коэффициенты вязкого демпфирования по шести направлениям, для линейных направлений единицы измерения т/(м/с), для угловых в (т*м)/(рад/с).
Новые КЭ могут использоваться для описания внешних демпфирующих устройств, реагирующих на скорость перемещения узла по направлениям степеней свободы в общей системе координат. Предполагается, что реализуется вязкое демпфирование, т.е. сила сопротивления движению пропорциональна соответствующей компоненте скорости. Коэффициенты вязкого демпфирования задаются для каждого узлового смещения (поворота) независимо и не влияют друг на друга.
Важно!
Новые КЭ могут использоваться для динамических расчетов только в расчетах прямого интегрирования уравнений движения, т.е. в системе “Динамика во времени”. Другие режимы расчета никак не реагируют на его присутствие в расчетной схеме.
-
Реализована возможность для каждого динамического загружения задавать список КЭ, в узлы которых будут собираться массы. Данная возможность упростит подготовку расчетных схем, когда возникала необходимость для сбора масс создавать дублирующие загружения, в которых, например, исключались нагрузки для стилобатной части здания. Или когда в рамках одной модели выполняется расчет отдельных секций зданий на общем фундаменте, и приходилось разделять массы для получения корректного расчета инерционных нагрузок и контроля набора модальных масс по отдельным секциям.
-
Добавлена возможность для каждого элемента схемы использовать уникальный повышающий коэффициент fvk для каждого сейсмического модуля. Данная возможность позволяет выполнить корректировку полученных усилий от сейсмики, например, для случаев, когда здание классифицировано как нерегулярное по высоте из-за резкого увеличения массы или уменьшения жесткостей вертикальных несущих конструкций в одном или нескольких этажах по сравнению с другими смежными этажами. По умолчанию коэффициент fvk для всех элементов расчетной схемы равен единице. Для контроля и документирования исходных данных доступна соответствующая мозаика.
-
При выполнении расчета с контролем параметров реализован учет пользовательских критериев остановки расчета. Имеется возможность задать следующие критерии:
- максимальное допустимое перемещение по заданным направлениям;
- геометрическая изменяемость по заданным направлениям;
- потеря устойчивости по заданным направлениям.
-
При расчёте с использованием геометрической нелинейности для стержневых элементов подключена полная геометрическая матрица жесткости. Данная возможность позволит выполнять оценку изгибно-крутильной формы потери устойчивости и находить её вклад в коэффициент запаса.
-
Для всех доступных нелинейных законов деформирования основного и армирующего материалов добавлена возможность использовать коэффициент “K” для корректировки значений предельных величин напряжений.
-
Реорганизован линейный и нелинейные расчеты, а также формирование файлов результатов в связи с появлением “Подзадач” и “Блоков расчета”.
-
Откорректирован расчет динамики во времени на воздействие сейсмограммы. Теперь учитываются скорости и ускорения в узлах, где задана сейсмограмма.
-
Откорректирован учет сдвига в матрице масс стержня.
-
Добавлены новые законы деформирования для бетона: 19-й полиномиальный закон деформирования бетона и 22-й нелинейный закон деформирования бетона по параболе.
Для описания 19-го закона в таблице “Параметры закона нелинейного деформирования” задаются значения для следующих параметров:
- начальный модуль упругости при сжатии Ecm(−);
- начальный модуль упругости при растяжении Ectm(+);
- максимальное значение прочности бетона на осевое растяжение fcm(−);
- максимальное значение прочности бетона на сжатие fctm(+);
- предельная относительная деформация бетона при сжатии εcu(−), εcu2;
- относительная деформация выхода на максимальное напряжение бетона при сжатии εc(−), εc2;
- предельная относительная деформация бетона при растяжении εctu(+);
- относительная деформация выхода на максимальное напряжение бетона при растяжении εct(+).
Для описания 22-го закона в таблице “Параметры закона нелинейного деформирования” задаются значения для следующих параметров:
- начальный модуль упругости при сжатии Ec(−), Eck (Ecd);
- начальный модуль упругости при растяжении Ect(+), Ectk (Ectd);
- максимальное значение прочности бетона на осевое растяжение fc(−), fck (fcd);
- максимальное значение прочности бетона на сжатие fct(+), fctk (fctd);
- предельная относительная деформация бетона при сжатии εcu(−), εcu2;
- относительная деформация выхода на максимальное напряжение бетона при сжатии εc(−), εc2;
- предельная относительная деформация бетона при растяжении εctu(+);
- относительная деформация выхода на максимальное напряжение бетона при растяжении εct(+);
- степень полинома n.
-
Для расчета устойчивости добавлена возможность выводить вклад каждой формы в общую энергию системы. Данная информация выводится в протоколе расчета.
-
Реализована возможность ставить расчет на паузу и потом продолжить его. Данная возможность может быть полезна для случая, когда во время продолжительного расчета возникает необходимость использовать ресурсы компьютера для других приложений. В режиме паузы МКЭ-процессор не использует ресурсы процессора, не производит операции с диском, но продолжает занимать выделенный объем ОЗУ, который был выделен до паузы.
ГРУНТ
-
В новой версии реализовано определение деформаций оснований за счет консолидации и ползучести грунта. Данная возможность доступна при использовании норм СП РК 5.01-102-2013, ДБН В.2.1-10:2009 и СП 22.13330.2011/2016. Предложенная методика расчета осадок консолидации и ползучести будет полезна при решении задач определения осадок оснований из водонасыщенных грунтов во времени, где полные деформации основания определяются суммой мгновенной осадки основания, осадки вызванной консолидацией и осадки вызванной ползучестью (вторичная консолидация).
Необходимые данные для выполнения расчета собраны на специализированных вкладках диалога “Характеристики грунта”. Расчет консолидации можно выполнять без учета вторичной консолидации, это необходимо для оценки вклада соответствующей составляющей и контроля вычисленных значений.
Реализованная методика расчета может использоваться для учета податливости упругого основания для системы “грунт - основание - надземное сооружение”. Подобные модели необходимы для выполнения серии расчетов и получения обобщенной модели в системе МЕТЕОР для учета вариации упругого основания на всех этапах нагружения и с учетом изменчивости свойств грунта на протяжении всего срока эксплуатации здания/сооружения.
-
Добавлена возможность расчета дополнительной составляющей осадки для любого промежутка времени t за счет консолидации грунта. Расчет выполняется по формулам 7.5-7.7 пункт 7.2.2.1 НТП РК 07-01.4-2012.
-
Добавлена возможность расчета дополнительной составляющей осадки от ползучести. Расчет выполняется по формуле 7.16 пункт 7.2.3.5 НТП РК 07-01.4-2012.
-
В системе Грунт реализован расчет коэффициентов постели для стержней (пока только КЭ10). Для этого добавлена возможность назначать на стержни Pz в исходных данных и экспортировать из результатов расчета Rz для последующего итерационного уточнения С1, С2 (в Pz преобразуется среднее арифметическое между значениями Rz в сечениях стержня, которые менее нуля, т.е. растяжение С1, как и для пластин, в исходные данные не передается). В систему Грунт по умолчанию передается ширина ленты, равная ширине сечения В, но если при назначении Pz снять признак “Вс=В”, то будет возможность задать ширину ленты, отличную от ширины сечения В (например, учет вклада подбетонки в распределение напряжений на основание). Коэффициент постели из системы Грунт записывается в стержень из среднеарифметических значений С1, С2, полученных в центрах тяжести двух нагрузок, построенных по бокам от оси стержня с вылетом Вс/2. Чтобы получить коэффициенты постели переменные по длине ленты, нужно разбить стержень на отдельные КЭ.
-
Добавлена возможность вывода каждой из составляющих осадок свайных фундаментов (Sef - осадка условного фундамента, ΔSp - дополнительная осадка за счет продавливания свай на уровне подошвы условного фундамента, ΔSc - дополнительная осадка за счет сжатия ствола свай) и осадок от разных специфических грунтов - Ss. Соответствующую информацию о вкладе каждой составляющей осадки можно увидеть при выводе результатов расчета в любой точке модели в пределах контуров нагрузок. Данная реализация также поддерживается на уровне графического представления изополей, при построении которых можно включать/отключать отображение каждой составляющей осадки, при этом изополя и шкала результатов будут перестраиваться под выбранный набор.
-
Добавлена возможность вывода несущей способности свай с учетом коэффициентов условий работы. Соответствующий диалог активируется перед выводом мозаики N/Fd (отношение действующей нагрузки на сваю к несущей способности).
Реализован расчет свай-стоек. Осадка определяется как для висячих свай с уширением. Несущая способность по грунту вычисляется как бόльшая из двух несущих способностей: Fdb – несущая способность скального основания под нижним концом сваи, Fds – несущая способность сваи с учетом только сопротивления скальных грунтов на ее боковой поверхности. Если Fdb > Fds, то вся жесткость сваи будет приложена в ее основании, если же Fds > Fdb, то жесткость будет приложена только по длине сваи, аналогично висячей сваи (пропорционально вкладу fi грузовой площади КЭ57 в Fd). Для указания скальных грунтов необходимо в таблицу характеристик грунтов ввести дополнительные данные: Rc – расчетное значение предела прочности на одноосное сжатие скального грунта в водонасыщенном состоянии, Ks – коэффициент, учитывающий снижение прочности ввиду трещиноватости скальных грунтов (см. таблицу 7.1 в СП 24.13330). Если длина сваи или ее нижний конец соприкасается со скальным грунтом, то расчет переключается на ветку расчета сваи в скальном грунте. Если под скальным грунтом находится нескальный или свая прорезает скальный грунт, то во время расчета в окно «Ошибки и предупреждения» выводится предупреждение «[ ! ] Скальное основание имеет слабые прослойки! Несущую способность сваи-стойки Fd следует принимать по результатам испытаний статической нагрузкой».
-
В новой версии расширены возможности ограничения и контроля минимальной глубины сжимаемой толщи грунта - Нс. Минимальная глубина сжимаемой толщи может быть задана в абсолютной величине под нагрузкой, а также с помощью новой опции путем указания нижней абсолютной отметки модели грунта, до предела которой будет выполняться учет Нс, min.
Ранее величина Нс использовалась для определения осадки для всех нагрузок заданных в модели независимо от фактической ширины каждого из фундаментов (как правило, эта величина определялась для максимальной ширины всех фундаментов схемы). Теперь минимальная глубина сжимаемой толщи может быть назначена не только на всю модель целиком, но также может быть учтена индивидуально для каждой из нагрузок. В свойствах нагрузок появилось соответствующее свойство для управления Нс.
-
В новой версии добавлен поиск Нс с учетом слабых грунтов. В параметрах расчета добавлена соответствующая опция, которая активирует поле для ввода величины модуля деформаций для слабого грунта. По умолчанию предложенные значения соответствуют выбранным нормативам. В случае использования автоматического поиска слабого грунта алгоритм работает следующим образом:
- Выполняется расчет Нс с заданным коэффициентом глубины сжимаемой толщи - λ
- Если вычисленная Нс<Нс,min, тогда Нс=Нс,min
- Если сжимаемая толща грунта заканчивается в слабых грунтах:
- выполняется расчет Нс с коэффициентом глубины сжимаемой толщи равным 0,1(0,2) в зависимости от требования выбранных норм;
- выполняется определение Нс, которая ограничивается низом слабого грунта;
- из расчетов (а) и (b) выбирается меньшее значение Нс.
Если Нс из расчета п. 3(а) меньше, чем величина из п.3(b), и при этом величина Нс из п. 3(а) больше, чем Нс из п.2, тогда итоговая величина Нс принимается равной Нс из п.3(а). Иначе Нс приравнивается к п.3(b)
-
При вычислении жесткости свай как условного фундамента по методу 1 в усредненном модуле деформаций, C1 и С2 учитывается Sp - осадка от продавливания грунта сваей. Если условный свайный фундамент моделируется в системе ГРУНТ, и ствол сваи не смоделирован цепочкой стержневых КЭ, то учитывается как Sp, так и Sc – сжатие ствола свай. В случае, когда свайный фундамент смоделирован цепочкой стержней, сжатие ствола сваи Sс автоматически учитывается МКЭ расчетом.
-
В расчете свай (КЭ 57) в системе ГРУНТ как условного фундамента собственный вес тела свай обнуляется.
-
При вычислении Sp (осадка от продавливания грунта сваей) добавлена проверка условия E1≤E2 для модулей деформации грунта по длине сваи (E1) и под ней (E2).
-
При расчете одиночной сваи как условного фундамента шаг свай Acp = 3*D для круглой сваи и Acp=3*(B+H)/2 для прямоугольной. Радиус условного фундамента Rусл = Acp/2.
-
Добавлена возможность расчета горизонтальной жесткости Rx и Ry КЭ 57 для случая распределения сопротивления грунта по длине сваи “по результатам полевых испытаний”. Горизонтальная жесткость сваи может быть получена по модели грунта. Соответствующая настройка добавлена в перечень свойств групп свайного поля – "вычисление горизонтальной жесткости сваи".
-
Для контроля количества свай, заданных в модели, в диалоговом окне “Группы свайного поля” добавлена соответствующая информация.
-
Для норм ДБН В.2.1-10:2009 добавлена возможность расчета осадок для специфических грунтов: просадочных, засоленных, набухающих, насыпных и органических грунтов.
- Добавлен перевод единиц измерения для задания давления (P) в свойствах специфических грунтов, для случаев, когда используются настройки отличные от умолчания (т/м2).
- В окне “Произвольный разрез” системы “ГРУНТ”, котлован отображается только для нагрузок у которых установлен признак “Вычислять напряжение от вынутого грунта”.
- Окно управления системой координат по умолчанию отключено.
- В системе “ГРУНТ” добавлена опция включения/отключения отображения свай и номеров групп свайного поля.
- Для системы “ГРУНТ” выполнена адаптация элементов пользовательского интерфейса для работы с мониторами высокого разрешения UHD и 4К.
- Добавлена возможность назначать индивидуальные настройки грунтовой подушки для каждой подгруппы нагрузок. Данная реализация позволяет задавать в расчетной модели грунтовую подушку переменной мощности.
- Актуализирован расчет жесткости свай и осадок.
- Для расчета жесткости свай по модели условного фундамента добавлена возможность уточнять средний шаг свай, в настройках групп свайного поля предложены следующие варианты:
- Аср равен среднему шагу свай в группе свайного поля (определяется автоматически, как раньше);
- Аср равен среднему шагу свай в группе свайного поля, но не более 2*Rусл, где Rусл - значение принятое для определения габарита условного фундамента;
- Аср равен среднему шагу свай в группе свайного поля, но не более заданного значения;
- Аср равен заданному расстоянию.
Расчет железобетонных конструкций
-
Для пластинчатых элементов разработан новый алгоритм проверки равновесия и вычисления напряжений и деформаций в произвольных точках сечения. Для методики Вуд-Армера (Wood–Armer method) на базе этого алгоритма реализован новый вариант подбора и проверки арматуры для 1-го и 2-го предельных состояний. Этот метод позволяет ускорить подбор арматуры и получить в плоскости пластины более плавное распределение арматуры. Новый алгоритм подключен к расчету по нормам СП РК EN 1992-1-1:2004/2011, EN 1992-1-1:2004, ДБН В.2.6-98:2009, ТКП EN 1992-1-1:2009, ДСТУ-Н Б EN 1992-1-1:2010, СП 63.13330.2018.
-
Для норм СП РК EN 1992-1-1:2004/2011, EN 1992-1-1:2004, ДБН В.2.6-98:2009, ТКП EN 1992-1-1:2009, СП 63.13330.2018 расширен перечень сечений для которых реализовано определения коэффициента запаса для заданного армирования. Появилась возможность определять КЗ для крестовых, уголковых и несимметричных тавровых сечениях.
-
Для норм ДБН В.2.6-98:2009 добавлена возможность расчета сталежелезобетонных сечений.
-
Для норм ДБН В.2.6-98:2009 добавлена возможность расчета огнестойкости железобетонных сечений в соответствии с ДСТУ Н Б EN 1992-1-2:2012.
-
Для норм ДБН В.2.6-98:2009 добавлена возможность использовать характеристические (нормативные) значения прочности бетона и арматуры при расчете на особые и сейсмические воздействия (группа усилий D1 и С1).
-
Реализован новый режим расчета «Дополнительное армирование». Для элементов, в которых назначены ЖБ материалы и заданы наборы ТЗА, этот режим позволяет получить величину и положение недостающей площади арматуры, необходимой для обеспечения несущей способности сечения. Положение площадок дополнительного армирования синхронизировано с положением площадок основного расчета.
Для удобства пользователя предусмотрено два режима вычислений дополнительного армирования:
“ДА” – позволяет получить площади дополнительного армирования только в тех элементах, в которых заданной площади арматуры недостаточно для обеспечения несущей способности сечения;
“ДА/КЗ” – позволяет получить недостающую площадь в тех элементах, в которых ее недостаточно, и получить обобщенный коэффициент запаса для элементов, в которых несущая способность обеспечена.
На расчетной схеме результаты подбора дополнительного армирования выдаются в виде мозаик. Для режима “ДА/КЗ” на расчетной схеме величина КЗ показывается стандартным способом. Элементы, в которых необходимо дополнительное армирование, красятся цветом диапазона КЗ < 1.
В текстовом виде результаты подбора дополнительного армирования выдаются в одной таблице. Результатом расчета дополнительного армирования может быть либо недостающая площадь арматуры, либо коэффициент запаса, либо код ошибки.
-
Для норм ДБН В.2.6-98:2009 реализовано вычисление коэффициента FS согласно МТ-Т.0.03.326-13 «Методика розрахункового аналізу сейсмостійкості елементів діючих AEC у рамках методу граничної сейсмостійкості». Сейсмическая составляющая для его вычисления формируется при вычислении РСН или задается дополнительно в локальном режиме (ЛАРМ-САПР). В ЛАРМ-САПР есть возможность просмотреть протокол расчета.
-
Для норм СП РК EN 1992-1-1:2004/2011, EN 1992-1-1:2004, ТКП EN 1992-1-1:2009 и СП 63.13330.2018 в пластинчатых элементах добавлена проверка заданного армирования на действие перерезывающих сил.
-
Для норм СП 63.13330.2018 в приложении AvAnGArD для всех заданных или экспортируемых из локального режима комбинаций нормативных усилий выдаются эпюры напряжения и деформаций. В случае образования трещин показывается их глубина.
-
Для СП 63.13330.2018 добавлена возможность учитывать рекомендации пункта 6.1.23.
-
Добавлена возможность формировать типы заданного армирования поперечной арматуры для пластинчатых элементов и в режиме конструирования выполнять соответствующие проверки на действие перерезывающих сил.
-
Добавлена возможность автоматического создания ТЗА поперечной арматуры пластин на основании мозаики подобранного армирования и настроек шкалы для выдачи результатов.
-
При задании ТЗА для пластинчатых элементов добавлена возможность использовать привязку армирования, назначенную в материалах конструирования, при этом в качестве исходных данных задается только интенсивность армирования.
-
Для пластинчатых элементов при задании ТЗА появилась возможность задать установку арматуры симметрично. Возможны 7 вариантов симметрии; полная симметрия, симметрия по граням и по слоям.
-
В задачах “Динамики во времени” добавлена возможность расчета на продавливание.
-
При формировании расчетных сочетаний (РСН) для продавливания исключены сочетания для 2-го ПС.
-
Добавлена возможность расчета расхода арматурной стали на основании назначенных типов заданного армирования. Расчет может быть произведен для всех элементов схемы, а также для выделенных. Данная функция доступна в режиме конструирования железобетонных конструкций диалогового окна “Расход бетона и арматуры”.
Проектирование металлических конструкций
-
Реализован расчет алюминиевых конструкций в соответствии с требованиями СП 128.13330.2016 (основные сплошные типы сечений: двутавр, сварной двутавр, уголок, швеллер, тавр, прямоугольное трубчатое сечение и несимметричный двутавр. Расчет учитывает стесненное кручение (без учета чистого кручения). Для того чтобы охватить все многообразие возможных форм сечений, предлагаемых заводами, добавлена возможность подключать пользовательские типы сечений в сортаменты профилей и использовать такие сортаменты в конструктивном расчете сечений/элементов.
В расчете стержневых элементов алюминиевых конструкций выделены следующие виды напряженного состояния: ферменный (продольное усилие N), балка (изгибающие моменты My, Mz, перерезывающие силы Qz и Qy, бимомент Mw), колонна (продольное усилие N, изгибающие моменты My, Mz, перерезывающие силы Qz, Qy и бимомент Mw), универсальный (элементы рассчитываются по всем расчетным процедурам и в итоговый процент использования выбирается самый неблагоприятный результат).
Важно!
Выбранный тип сортамента определяет, какие данные будут использоваться в проверке/подборе сечений. Например, если произвольное сечение отнесено к работе двутавра, тогда в расчете на устойчивость будет использоваться коэффициент влияния формы сечения η, соответствующий схеме сечения и эксцентриситету, представленному в таблице Е.3.
Локальные усиления свободных свесов, различные виды утолщений в проверке местной устойчивости в новой версии не учитываются.
-
В библиотеке жесткостей добавлена новая вкладка доступных типов алюминиевых сечений.
-
В диалоговом окне “Жесткости и материалы” вкладка “Сталь” получила более широкое название “Металл”.
-
Данные сортаментов сталей и сплавов расширены информацией о модуле упругости, сдвига и плотности. В случае, когда эта информация не задана, то принимаются значения этих величин по умолчанию.
-
Выбор файлов сортаментов осуществляется по расширению
*steels.srt
и*.aluminum.srt
, а также по внутреннему признаку, установленному в сортаменте. -
Набор “Дополнительных характеристик” зависит от выбранного текущего типа профиля (сталь или алюминий) и расширен выбором температурного режима, в котором возможна эксплуатация конструкции (-70…-40, -40…+50,+50…+100), и новым перечнем допустимых гибкостей.
-
Т.к. в СП 128.13330.2016 нет рекомендаций по поводу расчета на прогрессирующее обрушение и расчета конструкции на прогибы, эти расчеты наследуются из реализованного ранее расчета по СП 16.13330.2017.
-
В новой версии добавлена возможность исключать опорные сечения из проверки на устойчивость, т.е. использовать в расчете M1 - наибольший изгибающий момент в пределах средней трети длины стержня, который принимается равным не менее 0,5Mmax.
Важно!
В случае использования конструктивных элементов выбор соответствующего значения осуществляется в пределах средней трети суммарной длины всех КЭ.
-
Добавлена возможность управления расчетом СТК в настройках “Вариантов конструирования” и диалоговом окне “Расчета с контролем параметров”, что позволяет включать или отключить выполнение проверки и/или подбора сечений в отдельных вариантах конструирования с учетом заданных параметров расчета, а также сохранять заданные параметры для последующих расчетов.
-
Добавлена обработка расчетных ситуаций, когда сейсмическое воздействие в расчетной модели задано квазистатической составляющей. Ранее для таких комбинаций нагрузок в расчет стальных конструкций передавался признак, что нагрузки статические.
-
Для норм ДБН В.2.6-198:2014 реализовано вычисление коэффициента сейсмического запаса - FS и соответствующего значения HCLPF (High Confidence Low Probability of Failure, высокая обеспеченность низкой вероятности отказа) согласно МТ-Т.0.03.326-13 «Методика розрахункового аналізу сейсмостійкості елементів діючих AEC у рамках методу граничної сейсмостійкості». Результаты расчета по каждой из проверок доступны в стандартных таблицах, а также в виде мозаик.
ReSpectrum
Программный модуль ReSpectrum предназначен для построения спектров ответа одномассового осциллятора от динамических воздействий, заданных с помощью акселерограмм, сейсмограмм, велосиграмм и трехкомпонентных акселерограмм, а также для взаимного преобразования этих воздействий (акселерограмма → сейсмограмма, акселерограмма → велосиграмма, сейсмограмма → акселерограмма, сейсмограмма → велосиграмма, велосиграмма → сейсмограмма, велосиграмма → акселерограмма).
Входные данные: файл с записью воздействия (формат файла – одно число в строке с точкой в качестве разделителя дробной части), продолжительность, шаг дискретизации, масштабный множитель, тип воздействия – сейсмограмма, велосиграмма, акселерограмма, трехкомпонентная акселерограмма. Дополнительные данные для спектра ответа – диапазон частот, шаг по частоте, коэффициент демпфирования.
При загрузке воздействия отображается его график и выполняется проверка на сбалансированность. В случае, если записано несбалансированное воздействие, выводятся характеристики разбалансировки (остаточные компоненты при преобразованиях) и появляется флажок “Сбалансировать”. Балансирование выполняется с помощью полиномиальной функции, которая учитывает остаточные компоненты преобразований.
В приложении реализовано расширение площадки пика спектра ответа, а также снижение амплитуды узкочастотного пика.
Для каждого пика спектра ответа выполняется расширение площадки на длину площадки, равную 0,3 от частоты пика. Линии, образующие пик, параллельно переносятся на значение площадки. В сочетании с расширением пика спектра отклика допустимо уменьшение амплитуды узкочастотного пика на 15%. Это снижение должно применяться только к узким частотным пикам неуширенного спектра ответа с отношением ширины полосы к центральной частоте 𝐵 менее 0,30:
𝐵=∆𝑓0.8/𝑓𝑐 < 0.30
где
∆𝑓0.8
– общий диапазон частот по спектральным амплитудам, которые превышают 80% пиковой спектральной амплитуды;
𝑓𝑐
– центральная частота для частот, которые превышают 80% пиковой амплитуды.
Полученные результаты преобразований можно сохранить или в виде картинки (в формате png-файла), или в формате txt-файла для дальнейшего использования в расчетах ПК ЛИРА-САПР, а также в формате csv-файла (таблицы Excel).
Вызов приложения доступен из среды ВИЗОР-САПР при использовании соответствующей команды “Вычислить спектр”, расположенной на вкладке “Расчет” панели инструментов “Динамика”.
Стержневые аналоги
- Добавлены новые доступные для распознавания формы сечения при автоматизированном создании стержневых аналогов: швеллер и короб. Сформированные таким способом СА могут использоваться в расчете железобетонных стен, для которых выполняется переход от модели, составленной пластинчатыми элементами, к стержневой аналогии с дальнейшим подбором/проверкой в соответствии с выбранными нормами проектирования.
- Добавлена возможность использования повышающего коэффициента fvk при определении усилий от сейсмического воздействия.
Конструктор сечений универсальный
-
Добавлена возможность импорта сечения балки из “САПФИР-ЖБК” в «Конструктор сечений». При этом в таблицу усилий автоматически заносятся усилия в выбранном сечении по всем загружениям, для которых выполнен расчет и по всем расчетным сочетаниям нагрузок.
-
Для арматурных включений добавлена возможность в расчете задавать величину предварительного напряжения, которая будет участвовать в определении НДС исследуемого сечения.
-
Для сплошных, полосовых элементов и арматурных включений добавлена возможность в расчете задавать величину предварительной деформации.
-
В диалоге "Настройки визуализации" добавлены опции, позволяющие отобразить в графическом виде идентификаторы материалов, назначенных элементам, и настроить размер шрифта этих подписей, а также настройки масштаба и толщины линий для отображения результатов в полосовых элементах.
Редактируемый сортамент стального проката
-
Выполнена адаптация элементов пользовательского интерфейса для работы с мониторами высокого разрешения UHD и 4К.
-
Добавлена возможносто создавать сортаменты алюминиевых сплавов и профилей, а также из любых других материалов.
-
Добавлена возможность подгружать в сортаменты профилей пользовательские типы сечений, созданные с использованием “Конструктора сечений”. Данная возможность может быть использована для удобного хранения и подключения таких сечений в МКЭ-расчет (использование жесткостных характеристик), а также в конструктивном расчете алюминиевых конструкций.
-
Добавлены новые сортаменты алюминиевых сплавов:
- алюминиевые сплавы, бесшовные трубы (DT), стандарт EN 754 (EN 1999-1-1:2007);
- алюминиевые сплавы, прессованные профили (EP), стандарт EN 755 (EN 1999-1-1:2007);
- алюминиевые сплавы, прессованные замкнутые профили (EP/H), стандарт EN 755 (EN 1999-1-1:2007);
- алюминиевый сплав, прессованный открытый профиль (EP/О), стандарт EN 755 (EN 1999-1-1:2007);
- алюминиевые сплавы, прессованные прутки и бруски (ER/B), стандарт EN 755 (EN 1999-1-1:2007);
- алюминиевые сплавы, прессованные трубы (ET), стандарт EN 755 (EN 1999-1-1:2007);
- алюминиевые сплавы, листы, полосы и пластины, стандарт EN 485 (EN 1999-1-1:2007);
- алюминиевые сплавы, прессованные профили, стандарт ГОСТ Р 56282-2014 (СП 128.13330.2016);
- алюминиевые сплавы, плиты, стандарт ГОСТ 17232-99 (СП 128.13330.2016);
- алюминиевые сплавы, листы, стандарт ГОСТ 21631-76 (СП 128.13330.2016).
-
Добавлены демонстративные сортаменты алюминиевых профилей
Внимание!
Сортаменты профилей и сплавов могут быть расширены по индивидуальным запросам в группу сопровождения.
Книга отчетов и справочная система
-
Таблицы исходных данных и результатов расчета расширены новыми исходными данными и новыми результатами расчета;
-
В стандартных таблицах добавлен новый фильтр для формирования экстремальных значений результатов, например, усилий (по сечениям) и/или на концах конструктивных элементов (в первом и последнем расчетных сечениях). Также таблица будет полезна для формирования экстремальных значений для всего набора расчетных сечений элементов (пластин, объемных КЭ и др.)
По сути это табличная оцифровка выборки по результатам расчета min/max/abs, представленных ранее только в графическом виде.
Данный фильтр доступен для всего перечня таблиц результатов, в том числе и для конструирующих систем.
-
Реализована таблица результатов перемещений и усилий для промежуточных шагов в нелинейных расчетах.
-
Шаблон верстки теперь сохраняется в ZIP и распаковывается из ZIP-архива задачи вместе с книгой отчетов (по умолчанию шаблоны находятся по следующему пути:
C:\Users\Public\Documents\LIRA SAPR\LIRA SAPR 20хх\Settings
). В связи с этим файлы шаблоновBook_en_A4.docx
,book_ru_a4.docx
,Book_ua_A4.docx
добавлены в архивTEMPL.zip
, чтобы пользователь имел их исходную версию. -
В контекстное меню Книги Отчетов для копий экрана добавлена новая команда, которая отмечает на схеме те узлы и элементы, для которых выполнялось документирование.
-
Контекстная справка дополнена описанием новых возможностей ПК ЛИРА-САПР 2022.
КИРПИЧ
- В новой версии реализована проверка на действие горизонтальной нагрузки с учетом совместной работы поперечных и продольных стен. В основе данного расчёта лежит алгоритм, который автоматически определяет форму простенков, а также анализирует взаимное расположение продольных и поперечных элементов стен.Результаты расчета представляются в виде мозаик и соответствующих таблиц результатов. Кроме этого, по каждой группе простенков можно посмотреть детальный протокол с трассировкой, который служит для контроля последовательности всех вычислений.
САПФИР-ЖБК
- Для видов армирования плиты реализована опция, позволяющая в рабочем виде отобразить обозначение раскладок участков дополнительного армирования плиты так, как они будут представлены на чертеже.
- Добавлено автоматическое ориентирование обозначений фоновой арматуры в направлении согласованных осей, заданных в свойствах армируемой плиты.
- Добавлена возможность создания 2D узла из вида армирования.
- Для видов армирования диафрагмы добавлена настройка обозначения зон армирования на чертеже.
- Для каркасов продавливания добавлена возможность выполнить изменения класса арматуры в диалоговом окне “Спецификация арматуры”.
- В диалоговое окно “Унификация плит” добавлена визуальная информация в виде одинаковых цветов строк для плит похожих по площади.
- Добавлен выбор нормативного документа ДСТУ 3760:2019 для арматурных стержней, арматурных деталей, хомутов и шпилек.
- Для модели армирования колонны добавлена возможность “ручного” редактирования позиций хомутов.
САПФИР-ГЕНЕРАТОР
- Ускорена работа со схемами с большим количеством НОДов.
- Реализованы новые ноды:
- “Подрезка балок” для подрезки или дотягивания балок под стены, колонны, линии или другие балки. Дополнительно можно ограничить зону в которой будет выполняться подрезка или дотягивание;
- “Удаление совпадающих участков линий” для удаления дублирующихся участков линий, чтобы не возникали ошибки при дальнейшем создании модели на базе этих линий;
- “Удаление совпадающих точек” для удаления дублирующихся точек;
- “Вентканал” для создания по линии объекта типа Вентканал, который будет прорезать отверстия в стенах и плитах;
- “Шахта по контуру”, автоматически создающий отверстия в плитах перекрытия, которые пересекает;
- “Нагрузка в направлении вектора” для формирования равномерных и неравномерных линейных нагрузок вдоль заданного вектора. Например, чтобы приложить ветровую нагрузку к стержневым элементам;
- “Линии из колонны” для получения вертикальной осевой линии колонны и линии контура сечения колонны;
- “Преобразование объектов” для преобразования одних типов объектов в другие;
- “Импорт XLS файла”, позволяющий импортировать обновляемый файл Excel с числовыми значениями.На входах нода можно указать с какого листа брать значения, из каких столбцов, рядов, ячеек или диапазонов ячеек. В результате работы нода формируется выход нода с данными из ячеек или несколько выходов с соответствующими наименованиями столбцов, которые дальше можно соединять связями с другими нодами.
- “Список элементов, заданных индексами” разделяет список элементов со входа на разные выходы в соответствии с введенными индексами;
- “Преобразование строки в массив вещественных чисел” для преобразования заданной текстовой строки в массив вещественных чисел;
- “Преобразование строки в массив целых чисел” для преобразования заданной текстовой строки в массив целых чисел;
- “Массивы наборов точек, заданные индексами” для формирования из 1-го набора точек нескольких массивов точек в соответствии с введенными индексами.
- Усовершенствованы ноды:
- “Колонны по точкам” - добавлена возможность создать колонны по вертикальной линии (например, из 3D dxf);
- “Продвинутое создание этажей по заданным уровням” - увеличено количество возможных входов для этажей с 32 до 1024;
- “Блок моделей” - добавлена возможность изменить свойства внутренних объектов через подключение ко входу Par входного параметра нода “InPar”;
- “Булево объединение линий”, “Булево вычитание из линий входа 1 линий входа 2” и “Булево пересечение линий” - добавлены дополнительные выходы Ln с контурами отверстий;
- “Импорт IFC” и “Импорт SAF” - добавлены выходы для получения доступа к импортированным объектам, чтобы выполнить их преобразование в другие типы объектов или изменить свойства импортированных объектов.